Methane Oxidation Efficiency in Biofiltration Systems with Different Moisture Content Treating Diluted Landfill Gas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Filter Media Characterization and Sampling
2.2. Batch Incubation Tests
2.3. Columns Experimental Design and Setup
2.4. Column Experimental Run
2.5. Gas Analysis
3. Results and Discussion
3.1. Compost Material Characteristics
3.2. Batch Experiments—Compost CH4 Oxidation Potential
3.3. Column Test—Gas Concentration Profiles
3.4. Column Test—Oxidation Rate and Efficiency
3.5. Column Test—Mass Balance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bacchi, D.; Bacci, R.; Ferrara, G.; Lombardi, L.; Pecorini, I.; Rossi, E. Life Cycle Assessment (LCA) of landfill gas management: Comparison between conventional technologies and microbial oxidation systems. Energy Procedia 2018, 148, 1066–1073. [Google Scholar] [CrossRef]
- Rossi, E.; Pecorini, I.; Iannelli, R. Risk assessment of a methane oxidizing biofilter for reducing landfill gas emissions from a post-closure landfill. Procedia Environ. Sci. Eng. Manag. 2019, 6, 209–219. [Google Scholar]
- Huber-Humer, M.; Gebert, J.; Hilger, H. Biotic systems to mitigate landfill methane emissions. Waste Manag. Res. 2008, 26, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Rossi, E.; Pecorini, I.; Iannelli, R. Methane oxidation of residual landfill gas in a full-scale biofilter: Human health risk assessment of volatile and malodours compound emissions. In Environmental Science and Pollution Research; Spinger: Berlin, Germany, 2020. [Google Scholar]
- Lombardi, L.; Carnevale, E.A.; Pecorini, I. Experimental evaluation of two different types of reactors for CO2 removal from gaseous stream by bottom ash accelerated carbonation. Waste Manag. 2016, 58, 287–298. [Google Scholar] [CrossRef]
- Pecorini, I.; Bacchi, D.; Ferrara, G.; Rossi, E.; Caselli, R.L.; Zipoli, L.; Menghetti, F. Biofiltration prototyes for methane oxidation in landfill aftercare and abatement of NMVOCs and odorous compounds. Procedia Environ. Sci. Eng. Manag. 2017, 4, 173–181. [Google Scholar]
- Pecorini, I.; Rossi, E.; Iannelli, R. Mitigation of Methane, NMVOCs and Odor Emissions in Active and Passive Biofiltration Systems at Municipal Solid Waste Landfills. Sustainability 2020, 12, 3203. [Google Scholar] [CrossRef] [Green Version]
- Fjelsted, L.; Scheutz, C.; Christensen, A.G.; Larsen, J.E.; Kjeldsen, P. Biofiltration of diluted landfill gas in an active loaded open-bed compost filter. Waste Manag. 2020, 103, 1–11. [Google Scholar] [CrossRef]
- Jung, H.; Oh, K.-C.; Ryu, H.-W.; Jeon, J.-M.; Cho, K.-S. Simultaneous mitigation of methane and odors in a biowindow using a pipe network. Waste Manag. 2019, 100, 45–56. [Google Scholar] [CrossRef]
- Pecorini, I.; Iannelli, R. Landfill GHG Reduction through Different Microbial Methane Oxidation Biocovers. Processes 2020, 8, 591. [Google Scholar] [CrossRef]
- Cassini, F.; Scheutz, C.; Skov, B.H.; Mou, Z.; Kjeldsen, P. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 1. System design and gas distribution. Waste Manag. 2017, 63, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Scheutz, C.; Kjeldsen, P.; Bogner, J.E.; De Visscher, A.; Gebert, J.; Hilger, H.A.; Huber-Humer, M.; Spokas, K. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag. Res. 2009, 27, 409–455. [Google Scholar] [CrossRef] [PubMed]
- Gebert, J.; Röwer, I.U.; Scharff, H.; Roncato, C.D.L.; Cabral, A.R. Can soil gas profiles be used to assess microbial CH4 oxidation in landfill covers? Waste Manag. 2011, 31, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Rossi, E.; Frasi, N.; Pecorini, I.; Ferrara, G. Methane oxidation efficiency and NMVOCs reduction in a full-scale passive bioifltration system for the treatment of residual landfill gas. Procedia Environ. Sci. Eng. Manag. 2018, 5, 147–152. [Google Scholar]
- Fredenslund, A.M.; Scheutz, C.; Kjeldsen, P. Tracer method to measure landfill gas emissions from leachate collection systems. Waste Manag. 2010, 30, 2146–2152. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Liu, J.; Zhao, P.; Li, W.; Yan, L.; Piringer, M.; Schauberger, G. Evaluation of the chemical composition and correlation between the calculated and measured odour concentration of odorous gases from a landfill in Beijing, China. Atmos. Environ. 2017, 164, 337–347. [Google Scholar] [CrossRef]
- Pecorini, I.; Baldi, F.; Bacchi, D.; Carnevale, E.A.; Corti, A. Leaching behaviour of hazardous waste under the impact of different ambient conditions. Waste Manag. 2017, 63, 96–106. [Google Scholar] [CrossRef]
- Haubrichs, R.; Widmann, R. Evaluation of aerated biofilter systems for microbial methane oxidation of poor landfill gas. Waste Manag. 2006, 26, 408–416. [Google Scholar] [CrossRef]
- Scheutz, C.; Cassini, F.; De Schoenmaeker, J.; Kjeldsen, P. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 2. Methane oxidation. Waste Manag. 2017, 63, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Alvarenga, P.; Mourinha, C.; Farto, M.; Santos, T.; Palma, P.; Sengo, J.; Morais, M.-C.; Cunha-Queda, C. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors. Waste Manag. 2015, 40, 44–52. [Google Scholar] [CrossRef]
- Dever, S.; Swarbrick, G.E.; Stuetz, R.M. Handbook for the Design, Construction, Operation, Monitoring and Maintenance of a Passive Landfill Gas Drainage and Biofiltration System. 2019. Available online: https://www.researchgate.net/publication/239998633_Handbook_for_the_design_construction_operation_monitoring_and_maintenance_of_a_passive_landfill_gas_drainage_and_biofiltration_system (accessed on 20 March 2020).
- EU. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. Available online: https://eur-lex.europa.eu/eli/reg/2019/1009/oj (accessed on 27 April 2020).
- Huber-Humer, M.; Röder, S.; Lechner, P. Approaches to assess biocover performance on landfills. Waste Manag. 2009, 29, 2092–2104. [Google Scholar] [CrossRef]
- Pecorini, I.; Bacchi, D.; Iannelli, R. Biodrying of the Light Fraction from Anaerobic Digestion Pretreatment in Order to Increase the Total Recovery Rate. Processes 2020, 8, 276. [Google Scholar] [CrossRef] [Green Version]
- Albini, E.; Pecorini, I.; Ferrara, G. Evaluation of biological processes performances using different stability indices. Procedia Environ. Sci. Eng. Manag. 2019, 6, 1–10. [Google Scholar]
- Thomasen, T.B.; Scheutz, C.; Kjeldsen, P. Treatment of landfill gas with low methane content by biocover systems. Waste Manag. 2019, 84, 29–37. [Google Scholar] [CrossRef] [PubMed]
- CFR. CENTRO FUNZIONALE. Available online: http://www.cfr.toscana.it/ (accessed on 9 May 2020).
- Pecorini, I. Sistemi di Monitoraggio delle Emissioni Diffuse di Biogas da Discarica per la Ottimizzazione del Sistema di Gestione. Ph.D. Thesis, University of Florence, Florence, Italy, 2010. [Google Scholar]
- Baldi, F.; Iannelli, R.; Pecorini, I.; Polettini, A.; Pomi, R.; Rossi, A. Influence of the pH control strategy and reactor volume on batch fermentative hydrogen production from the organic fraction of municipal solid waste. Waste Manag. Res. 2019, 37, 478–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldi, F.; Pecorini, I.; Iannelli, R. Comparison of single-stage and two-stage anaerobic co-digestion of food waste and activated sludge for hydrogen and methane production. Renew. Energy 2019, 143, 1755–1765. [Google Scholar] [CrossRef]
- Liu, F.; Fiencke, C.; Guo, J.; Lyu, T.; Dong, R.; Pfeiffer, E.-M. Optimisation of bioscrubber systems to simultaneously remove methane and purify wastewater from intensive pig farms. Environ. Sci. Pollut. Res. 2019, 26, 15847–15856. [Google Scholar] [CrossRef]
- Gebert, J.; Groengroeft, A.; Miehlich, G. Kinetics of microbial landfill methane oxidation in biofilters. Waste Manag. 2003, 23, 609–619. [Google Scholar] [CrossRef]
- Kjeldsen, P.; Scheutz, C. Landfill Gas Management by Methane Oxidation. In Solid Waste Landfilling; Elsevier: London, UK, 2018; pp. 477–497. ISBN 978-0-12-818336-6. [Google Scholar]
- Scheutz, C.; Pedersen, R.B.; Petersen, P.H.; Jørgensen, J.H.B.; Ucendo, I.M.B.; Mønster, J.G.; Samuelsson, J.; Kjeldsen, P. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system. Waste Manag. 2014, 34, 1179–1190. [Google Scholar] [CrossRef]
- Capanema, M.A.; Cabral, A.R. Evaluating Methane Oxidation Efficiencies in Experimental Landfill Biocovers by Mass Balance and Carbon Stable Isotopes. Water. Air. Soil Pollut. 2012, 223, 5623–5635. [Google Scholar] [CrossRef]
Parameter | Initial Compost | Column A | Column B | Column C |
---|---|---|---|---|
Gravimetric water content [%TS] | 16.71 ± 0.70 | 21.45 ± 1.41 | 48.37 ± 1.15 | 68.17 ± 2.38 |
Water content [%w/w] | 14.32 ± 0.51 | 17.66 ± 0.96 | 32.60 ± 0.52 | 40.53 ± 0.84 |
Total Solid [%w/w] | 85.68 ± 0.51 | 82.34 ± 0.96 | 67.40 ± 0.52 | 59.47 ± 0.84 |
Total volatile solid [%TS] | 29.62 ± 2.09 | 25.32 ± 1.49 | 34.34 ± 0.43 | 29.27 ± 0.76 |
Bulk density [kg TS L−1] | 0.506 | 0.486 | 0.398 | 0.351 |
Total porosity [-] | 0.740 | 0.750 | 0.795 | 0.819 |
Water filled porosity [-] | 0.085 | 0.104 | 0.192 | 0.239 |
Gas-filled porosity [-] | 0.655 | 0.645 | 0.603 | 0.580 |
O2 Consumption [mg O2 kg TVS−1 h−1] | 884 | - | - | - |
CO2 Consumption [mg O2 kg TVS−1 h−1] | 570 | - | - | - |
Column. | Configuration | Retention Time [h] | Inlet Flow [mL/min] | Initial Conc. [%CH4] | CH4 Load [g CH4 m−2 d−1 ] | CH4 Oxid. Eff. [%] | CH4 Oxid. Rate [g CH4 m−2 d−1] | Mass Balance [mol m−2 d−1] | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CH4in | CO2in | CH4out | CO2out | CO2,resp | ||||||||
Column A | 0–100 | 311 ± 95 | 1.89 ± 0.63 | 100.00 | 56.41 ± 18.88 | 87.85 ± 11.03 | 49.56 | 3.53 | 0.50 | 0.43 | 6.63 | 0.88 ± 4.84 |
100–200 | 55 ± 2 | 10.03 ± 0.44 | 51.49 ± 1.81 | 150.48 ± 30.39 | 92.72 ± 13.90 | 139.52 | 9.40 | 4.11 | 0.68 | 18.63 | ||
200–300 | 36 ± 4 | 15.32 ± 1.45 | 54.74 ± 2.11 | 246.05 ± 25.60 | 70.64 ± 10.31 | 173.82 | 15.38 | 6.28 | 4.51 | 17.37 | ||
>300 | 29 ± 3 | 19.15 ± 1.82 | 57.81 ± 1.17 | 361.74 ± 84.24 | 54.63 ± 34.25 | 197.62 | 22.61 | 13.07 | 10.26 | 19.89 | ||
Column B | 0–100 | 245 ± 60 | 2.32 ± 0.51 | 100.00 | 68.94 ± 15.20 | 99.92 ± 0.14 | 68.89 | 4.31 | 0.60 | 0.00 | 9.22 | 5.19 ± 7.56 |
100–200 | 52 ± 2 | 10.62 ± 0.47 | 51.77 ± 1.48 | 155.66 ± 13.42 | 95.82 ± 7.73 | 149.15 | 9.73 | 3.30 | 0.41 | 26.95 | ||
200–300 | 36 ± 2 | 15.40 ± 0.68 | 54.67 ± 2.12 | 244.15 ± 18.58 | 61.19 ± 15.35 | 149.39 | 15.26 | 7.52 | 5.92 | 23.08 | ||
>300 | 28 ± 3 | 19.66 ± 1.90 | 57.81 ± 1.17 | 399.85 ± 127.37 | 59.30 ± 32.70 | 237.11 | 24.99 | 12.24 | 10.17 | 22.96 | ||
Column C | 0–100 | 392 ± 118 | 1.52 ± 0.57 | 100.00 | 45.14 ± 17.21 | 99.23 ± 1.52 | 44.79 | 2.82 | 0.60 | 0.02 | 8.75 | 13.20 ± 15.98 |
100–200 | 52 ± 8 | 11.12 ± 2.16 | 52.11 ± 1.90 | 160.57 ± 14.74 | 88.14 ± 17.89 | 141.53 | 10.04 | 4.62 | 1.19 | 43.99 | ||
200–300 | 35 ± 3 | 15.77 ± 3.26 | 54.25 ± 2.16 | 260.18 ± 28.82 | 43.27 ± 23.45 | 112.57 | 16.26 | 7.20 | 9.23 | 36.10 | ||
>300 | 30 ± 3 | 18.25 ± 1.15 | 57.36 ± 1.14 | 353.13 ± 71.73 | 56.37 ± 21.78 | 199.06 | 22.07 | 12.01 | 9.63 | 19.51 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frasi, N.; Rossi, E.; Pecorini, I.; Iannelli, R. Methane Oxidation Efficiency in Biofiltration Systems with Different Moisture Content Treating Diluted Landfill Gas. Energies 2020, 13, 2872. https://doi.org/10.3390/en13112872
Frasi N, Rossi E, Pecorini I, Iannelli R. Methane Oxidation Efficiency in Biofiltration Systems with Different Moisture Content Treating Diluted Landfill Gas. Energies. 2020; 13(11):2872. https://doi.org/10.3390/en13112872
Chicago/Turabian StyleFrasi, Niccolò, Elena Rossi, Isabella Pecorini, and Renato Iannelli. 2020. "Methane Oxidation Efficiency in Biofiltration Systems with Different Moisture Content Treating Diluted Landfill Gas" Energies 13, no. 11: 2872. https://doi.org/10.3390/en13112872
APA StyleFrasi, N., Rossi, E., Pecorini, I., & Iannelli, R. (2020). Methane Oxidation Efficiency in Biofiltration Systems with Different Moisture Content Treating Diluted Landfill Gas. Energies, 13(11), 2872. https://doi.org/10.3390/en13112872