A Review on Bio-Based Catalysts (Immobilized Enzymes) Used for Biodiesel Production
Abstract
:1. Introduction
2. Immobilization of Lipases
3. Physical Adsorption
4. Entrapment
5. Covalent Bonding
6. Cross-Linking
7. Nano-Structures
7.1. Nanoparticles
7.1.1. Non-Magnetic
7.1.2. Magnetic
7.2. Carbon Nanotubes
7.3. Nanofibers
7.4. Nanocomposite
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bilal, M.; Zhao, Y.; Noreen, S.; Shah, S.Z.H.; Bharagava, R.N.; Iqbal, H.M.N. Modifying bio-catalytic properties of enzymes for efficient biocatalysis: A review from immobilization strategies viewpoint. Biocatal. Biotransform. 2019, 37, 159–182. [Google Scholar] [CrossRef]
- Carteret, C.; Jacoby, J.; Blin, J.L. Using factorial experimental design to optimize biocatalytic biodiesel production from Mucor Miehei Lipase immobilized onto ordered mesoporous materials. Microporous Mesoporous Mater. 2018, 268, 39–45. [Google Scholar] [CrossRef]
- Pollard, D.J.; Woodley, J.M. Biocatalysis for Pharmaceutical Intermediates: The Future Is Now. Trends Biotechnol. 2007, 25, 66–73. [Google Scholar] [CrossRef]
- Garcia-Galan, C.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R.; Rodrigues, R.C. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv. Synth. Catal. 2011, 353, 2885–2904. [Google Scholar] [CrossRef]
- Kakugawa, K.; Shobayashi, M.; Suzuki, O.; Miyakawa, T. Purification and characterization of a lipase from the glycolipid-producing yeast kurtzmanomyces sp. I-11. Biosci. Biotechnol. Biochem. 2002, 66, 978–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szczęsna Antczak, M.; Kubiak, A.; Antczak, T.; Bielecki, S. Enzymatic biodiesel synthesis–Key factors affecting efficiency of the process. Renew. Energy 2009, 34, 1185–1194. [Google Scholar] [CrossRef]
- Hu, Y.; Dai, L.; Liu, D.; Du, W. Rationally designing hydrophobic UiO-66 support for the enhanced enzymatic performance of immobilized lipase. Green Chem. 2018, 20, 4500–4506. [Google Scholar] [CrossRef]
- Liu, L.H.; Shih, Y.H.; Liu, W.L.; Lin, C.H.; Huang, H.Y. Enzyme Immobilized on Nanoporous Carbon Derived from Metal–Organic Framework: A New Support for Biodiesel Synthesis. ChemSusChem 2017, 10, 1364–1369. [Google Scholar] [CrossRef]
- Shah, S.; Gupta, M.N. The effect of ultrasonic pre-treatment on the catalytic activity of lipases in aqueous and non-aqueous media. Chem. Cent. J. 2008, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bencze, L.C.; Bartha-Vári, J.H.; Katona, G.; Toşa, M.I.; Paizs, C.; Irimie, F.-D. Nanobioconjugates of Candida antarctica lipase B and single-walled carbon nanotubes in biodiesel production. Bioresour. Technol. 2016, 200, 853–860. [Google Scholar] [CrossRef]
- Shimada, Y.; Watanabe, Y.; Sugihara, A.; Tominaga, Y. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J. Mol. Catal. B Enzymatic 2002, 17, 133–142. [Google Scholar] [CrossRef]
- Wang, L.; Liu, X.; Jiang, Y.; Zhou, L.; Ma, L.; He, Y.; Gao, J. Biocatalytic pickering emulsions stabilized by lipase-immobilized carbon nanotubes for biodiesel production. Catalysts 2018, 8, 587. [Google Scholar] [CrossRef] [Green Version]
- Rafiei, S.; Tangestaninejad, S.; Horcajada, P.; Moghadam, M.; Mirkhani, V.; Mohammadpoor-Baltork, I.; Kardanpour, R.; Zadehahmadi, F. Efficient biodiesel production using a lipase@ZIF-67 nanobioreactor. Chem. Eng. J. 2018, 334, 1233–1241. [Google Scholar] [CrossRef]
- Gog, A.; Roman, M.; Toşa, M.; Paizs, C.; Irimie, F.D. Biodiesel production using enzymatic transesterification –Current state and perspectives. Renew. Energy 2012, 39, 10–16. [Google Scholar] [CrossRef]
- Nelson, L.A.; Foglia, T.A.; Marmer, W.N. Lipase-catalyzed production of biodiesel. JAOCS J. Am. Oil Chem. Soc. 1996, 73, 1191–1195. [Google Scholar] [CrossRef] [Green Version]
- Li, S.-F.; Fan, Y.-H.; Hu, R.-F.; Wu, W.-T. Pseudomonas cepacia lipase immobilized onto the electrospun PAN nanofibrous membranes for biodiesel production from soybean oil. J. Mol. Catal. B Enzymatic 2011, 72, 40–45. [Google Scholar] [CrossRef]
- Cubides-Roman, D.C.; Pérez, V.H.; de Castro, H.F.; Orrego, C.E.; Giraldo, O.H.; Silveira, E.G.; David, G.F. Ethyl esters (biodiesel) production by Pseudomonas fluorescens lipase immobilized on chitosan with magnetic properties in a bioreactor assisted by electromagnetic field. Fuel 2017, 196, 481–487. [Google Scholar] [CrossRef]
- Zhao, X.; Qi, F.; Yuan, C.; Du, W.; Liu, D. Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization. Renew. Sust. Energy Rev. 2015, 44, 182–197. [Google Scholar] [CrossRef]
- Jun, S.-H.; Lee, J.; Chan Kim, B.; Eun Lee, J.; Joo, J.; Park, H.; Ho Lee, J.; Lee, S.-M.; Lee, D.; Kim, S.; et al. Highly Efficient Enzyme Immobilization and Stabilization within Meso-Structured Onion-Like Silica for Biodiesel Production. Chem. Mater. 2012, 24, 924–929. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Lalia, B.S.; Hashaikeh, R. A review on electrospinning for membrane fabrication: Challenges and applications. Desalination 2015, 356, 15–30. [Google Scholar] [CrossRef]
- Shieh, C.-J.; Liao, H.-F.; Lee, C.-C. Optimization of lipase-catalyzed biodiesel by response surface methodology. Bioresour. Technol. 2003, 88, 103–106. [Google Scholar] [CrossRef]
- Du, W.; Xu, Y.-Y.; Liu, D.-H.; Li, Z.-B. Study on acyl migration in immobilized lipozyme TL-catalyzed transesterification of soybean oil for biodiesel production. J. Mol. Catal. B Enzymatic 2005, 37, 68–71. [Google Scholar] [CrossRef]
- Xie, W.; Ma, N. Immobilized Lipase on Fe3O4 Nanoparticles as Biocatalyst for Biodiesel Production. Energy Fuels 2009, 23, 1347–1353. [Google Scholar] [CrossRef]
- Aarthy, M.; Saravanan, P.; Gowthaman, M.K.; Rose, C.; Kamini, N.R. Enzymatic transesterification for production of biodiesel using yeast lipases: An overview. Chem. Eng. Res. Design 2014, 92, 1591–1601. [Google Scholar] [CrossRef]
- Fjerbaek, L.; Christensen, K.V.; Norddahl, B. A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol. Bioeng. 2009, 102, 1298–1315. [Google Scholar] [CrossRef]
- Christopher, L.P.; Hemanathan, K.; Zambare, V.P. Enzymatic biodiesel: Challenges and opportunities. Appl. Energy 2014, 119, 497–520. [Google Scholar] [CrossRef]
- Tan, T.; Lu, J.; Nie, K.; Deng, L.; Wang, F. Biodiesel production with immobilized lipase: A review. Biotechnol. Adv. 2010, 28, 628–634. [Google Scholar] [CrossRef]
- Zhong, L.; Feng, Y.; Wang, G.; Wang, Z.; Bilal, M.; Lv, H.; Jia, S.; Cui, J. Production and use of immobilized lipases in/on nanomaterials: A review from the waste to biodiesel production. Int. J. Biol. Macromolecules 2020, 152, 207–222. [Google Scholar] [CrossRef]
- Bajaj, A.; Lohan, P.; Jha, P.N.; Mehrotra, R. Biodiesel production through lipase catalyzed transesterification: An overview. J. Mol. Catal. B Enzymatic 2010, 62, 9–14. [Google Scholar] [CrossRef]
- Sánchez-Bayo, A.; Morales, V.; Rodríguez, R.; Vicente, G.; Bautista, L.F. Biodiesel production (FAEEs) by heterogeneous combi-lipase biocatalysts using wet extracted lipids from microalgae. Catalysts 2019, 9, 296. [Google Scholar] [CrossRef] [Green Version]
- Tacias-Pascacio, V.G.; Virgen-Ortíz, J.J.; Jiménez-Pérez, M.; Yates, M.; Torrestiana-Sanchez, B.; Rosales-Quintero, A.; Fernandez-Lafuente, R. Evaluation of different lipase biocatalysts in the production of biodiesel from used cooking oil: Critical role of the immobilization support. Fuel 2017, 200, 1–10. [Google Scholar] [CrossRef]
- Tran, D.-T.; Chen, C.-L.; Chang, J.-S. Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production. J. Biotechnol. 2012, 158, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.C.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Fernández-Lafuente, R. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 2013, 42, 6290–6307. [Google Scholar] [CrossRef] [PubMed]
- Jegannathan, K.R.; Abang, S.; Poncelet, D.; Chan, E.S.; Ravindra, P. Production of Biodiesel Using Immobilized Lipase—A critical Review. Crit. Rev.Biotechnol. 2008, 28, 253–264. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, J.; Liu, Z. Enhanced Activity of Immobilized or chemically Modified Enzymes. ACS Catal. 2015, 5, 4503–4513. [Google Scholar] [CrossRef]
- Dalla-Vecchia, R.; Nascimento, M.D.G.; Soldi, V. Aplicações sintéticas de lipases imobilizadas em polímeros. Química Nova 2004, 27, 623–630. [Google Scholar] [CrossRef] [Green Version]
- Amini, Z.; Ilham, Z.; Ong, H.C.; Mazaheri, H.; Chen, W.H. State of art and prospective of lipase-catalyzed transesterification reaction for biodiesel production. Energy Convers. Manag. 2017, 141, 339–353. [Google Scholar] [CrossRef]
- Ricardi, N.C.; de Menezes, E.W.; Valmir Benvenutti, E.; da Natividade Schöffer, J.; Hackenhaar, C.R.; Hertz, P.F.; Costa, T.M.H. Highly stable novel silica/chitosan support for β-galactosidase immobilization for application in dairy technology. Food Chem. 2018, 246, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Zdarta, J.; Meyer, A.S.; Jesionowski, T.; Pinelo, M. A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility. Catalysts 2018, 8, 92. [Google Scholar] [CrossRef] [Green Version]
- Hwang, E.T.; Gu, M.B. Enzyme stabilization by nano/microsized hybrid materials. Eng. Life Sci. 2013, 13, 49–61. [Google Scholar] [CrossRef]
- Brady, D.; Jordaan, J. Advances in enzyme immobilisation. Biotechnol. Lett. 2009, 31, 1639–1650. [Google Scholar] [CrossRef] [PubMed]
- Villeneuve, P.; Muderhwa, J.M.; Graille, J.; Haas, M.J. Customizing lipases for biocatalysis: A survey of chemical, physical and molecular biological approaches. J. Mol. Catal. B Enzymatic 2000, 9, 113–148. [Google Scholar] [CrossRef]
- De Paola, M.G.; Ricca, E.; Calabrò, V.; Curcio, S.; Iorio, G. Factor analysis of transesterification reaction of waste oil for biodiesel production. Bioresour. Technol. 2009, 100, 5126–5131. [Google Scholar] [CrossRef] [PubMed]
- Yagiz, F.; Kazan, D.; Akin, A.N. Biodiesel production from waste oils by using lipase immobilized on hydrotalcite and zeolites. Chem. Eng. J. 2007, 134, 262–267. [Google Scholar] [CrossRef]
- Shah, S.; Gupta, M.N. Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process BioChem. 2007, 42, 409–414. [Google Scholar] [CrossRef]
- Katiyar, M.; Ali, A. Immobilization of Candida rugosa lipase on MCM-41 for the transesterification of cotton seed oil. J. Oleo Sci. 2012, 61, 469–475. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, M.; Jung, D. Biocatalysis with enzymes immobilized on mesoporous hosts: The status quo and future trends. J. Mater. Chem. 2010, 20, 844–857. [Google Scholar] [CrossRef]
- Li, S.-F.; Chen, J.-P.; Wu, W.-T. Electrospun polyacrylonitrile nanofibrous membranes for lipase immobilization. J. Mol. Catal. B Enzymatic 2007, 47, 117–124. [Google Scholar] [CrossRef]
- Safaryan, S.M.; Yakovlev, A.V.; Pidko, E.A.; Vinogradov, A.V.; Vinogradov, V.V. Reversible sol–gel–sol medium for enzymatic optical biosensors. J. Mater. Chem. B 2017, 5, 85–91. [Google Scholar] [CrossRef]
- Souza, R.L.; Faria, E.L.P.; Figueiredo, R.T.; Mettedi, S.; Santos, O.A.A.; Lima, A.S.; Soares, C.M.F. Protic ionic liquid applied to enhance the immobilization of lipase in sol–gel matrices. J. Therm. Anal. Calorim. 2017, 128, 833–840. [Google Scholar] [CrossRef]
- Lalonde, J.; Margolin, A. Immobilization of Enzymes. In Enzyme Catalysis in Organic Synthesis: A Comprehensive Handbook; Drauz, K., Waldmann, H., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2002; pp. 163–184. [Google Scholar]
- Moreno-Pirajàn, J.C.; Giraldo, L. Study of immobilized candida rugosa lipase for biodiesel fuel production from palm oil by flow microcalorimetry. Arab. J. Chem. 2011, 4, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Noureddini, H.; Gao, X.; Philkana, R.S. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour. Technol. 2005, 96, 769–777. [Google Scholar] [CrossRef]
- Kuan, I.C.; Lee, C.C.; Tsai, B.H.; Lee, S.L.; Lee, W.T.; Yu, C.Y. Optimizing the production of biodiesel using lipase entrapped in biomimetic silica. Energies 2013, 6, 2052–2064. [Google Scholar] [CrossRef] [Green Version]
- Hsu, A.F.; Jones, K.; Marmer, W.N.; Foglia, T.A. Production of alkyl esters from tallow and grease using lipase immobilized in a phyllosilicate sol-gel. JAOCS J. Am. Oil Chem. Soc. 2001, 78, 585–588. [Google Scholar] [CrossRef]
- Kennedy, J.F.; Melo, E.H.M.; Jumel, K. Immobilized enzyme and cells. Chem. Eng. Prog. 1990, 86, 81–89. [Google Scholar]
- Brena, B.M.; Batista-Viera, F. Immobilization of Enzymes. In Immobilization of Enzymes and Cells; Guisan, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2006; pp. 15–30. [Google Scholar]
- Stoycheva, M.; Montero, G.; Toscano, L.; Valdez, B. The Immobilized Lipases in Biodiesel Product; Stoycheva, M., Montero, G., Eds.; InTech: London, UK, 2011; pp. 397–410. [Google Scholar]
- Mateo, C.; Fernandes, B.; van Rantwijk, F.; Stolz, A.; Sheldon, R.A. Stabilisation of oxygen-labile nitrilases via co-aggregation with poly(ethyleneimine). J. Mol. Catal. B Enzymatic 2006, 38, 154–157. [Google Scholar] [CrossRef]
- Mendes, A.A.; Giordano, R.C.; de LC Giordano, R.; de Castro, H.F. Immobilization and stabilization of microbial lipases by multipoint covalent attachment on aldehyde-resin affinity: Application of the biocatalysts in biodiesel synthesis. J. Mol. Catal. B Enzymatic 2011, 68, 109–115. [Google Scholar] [CrossRef]
- Tang, A.; Zhang, Y.; Wei, T.; Wu, J.; Li, Q.; Liu, Y. Immobilization of Candida cylindracea Lipase by Covalent Attachment on Glu-Modified Bentonite. Appl. BioChem. Biotechnol. 2019, 187, 870–883. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.; Canet, A.; Rivera, I.; Osório, N.M.; Sandoval, G.; Valero, F.; Ferreira-Dias, S. Biodiesel production from crude Jatropha oil catalyzed by non-commercial immobilized heterologous Rhizopus oryzae and Carica papaya lipases. Bioresour. Technol. 2016, 213, 88–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yücel, Y. Biodiesel production from pomace oil by using lipase immobilized onto olive pomace. Bioresour. Technol. 2011, 102, 3977–3980. [Google Scholar] [CrossRef] [PubMed]
- Murty, V.R.; Bhat, J.; Muniswaran, P.K.A. Hydrolysis of oils by using immobilized lipase enzyme: A review. Biotechnol. Bioprocess Eng. 2002, 7, 57–66. [Google Scholar] [CrossRef]
- Yugen, W.; Jian, X.; Guanjsheng, L.; Youyuan, Y. Immobilization of lipase by ultrafiltration and cross-bonding onto the polysulfone membrane surface. Bioresour. Technol. 2008, 99, 2299–2303. [Google Scholar]
- Abdulla, R.; Ravindra, P. Immobilized Burkholderia cepacia lipase for biodiesel production from crude Jatropha curcas L. oil. Biomass Bioenerg. 2013, 56, 8–13. [Google Scholar] [CrossRef]
- Dizge, N.; Keskinler, B. Enzymatic production of biodiesel from canola oil using immobilized lipase. Biomass Bioenerg. 2008, 32, 1274–1278. [Google Scholar] [CrossRef]
- Kumari, V.; Shah, S.; Gupta, M.N. Preparation of Biodiesel by Lipase-Catalyzed Transesterification of High Free Fatty Acid Containing Oil from Madhuca indica. Energy Fuels 2006, 21, 368–372. [Google Scholar] [CrossRef]
- Han, J.Y.; Kim, H.K. Transesterification using the cross-linked enzyme aggregate of Photobacterium lipolyticum Lipase M37. J. Microbiol. Biotechnol. 2011, 21, 1159–1165. [Google Scholar] [CrossRef] [Green Version]
- Ansari, S.A.; Husain, Q. Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol. Adv. 2012, 30, 512–523. [Google Scholar] [CrossRef]
- Kim, K.H.; Lee, O.K.; Lee, E.Y. Nano-immobilized biocatalysts for biodiesel production from renewable and sustainable resources. Catalysts 2018, 8, 68. [Google Scholar]
- Verma, M.L.; Puri, M.; Barrow, C.J. Recent trends in nanomaterials immobilised enzymes for biofuel production. Crit. Rev. Biotechnol. 2016, 36, 108–119. [Google Scholar] [CrossRef]
- Jia, H.; Zhu, G.; Wang, P. Catalytic Behaviors of Enzymes Attached to Nanoparticles: The Effect of Particle Mobility. Biotechnol. BioEng. 2003, 84, 406–414. [Google Scholar] [CrossRef]
- Kim, J.; Grate, J.W.; Wang, P. Nanostructures for enzyme stabilization. Chem. Eng. Sci. 2006, 61, 1017–1026. [Google Scholar] [CrossRef]
- Adlercreutz, P. Immobilisation and application of lipases in organic media. Chem. Soc. Rev. 2013, 42, 6406–6436. [Google Scholar] [CrossRef] [Green Version]
- Jesionowski, T. Preparation of colloidal silica from sodium metasilicate solution and sulphuric acid in emulsion medium. Coll. Surf. A PhysicoChem. Eng. Asp. 2001, 190, 153–165. [Google Scholar] [CrossRef]
- Jesionowski, T.; Krysztafkiewicz, A. Preparation of the hydrophilic/hydrophobic silica particles. Coll. Surf. A PhysicoChem. Eng. Asp. 2002, 207, 49–58. [Google Scholar] [CrossRef]
- Liese, A.; Hilterhaus, L. Evaluation of immobilized enzymes for industrial applications. Chem. Soc. Rev. 2013, 42, 6236–6249. [Google Scholar] [CrossRef]
- Macario, A.; Verri, F.; Diaz, U.; Corma, A.; Giordano, G. Pure silica nanoparticles for liposome/lipase system encapsulation: Application in biodiesel production. Catal. Today 2013, 204, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Babaki, M.; Yousefi, M.; Habibi, Z.; Mohammadi, M.; Yousefi, P.; Mohammadi, J.; Brask, J. Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: Effect of water, t-butanol and blue silica gel contents. Renew. Energy 2016, 91, 196–206. [Google Scholar] [CrossRef] [Green Version]
- Cipolatti, E.P.; Silva, M.J.A.; Klein, M.; Feddern, V.; Feltes, M.M.C.; Oliveira, J.V.; Ninow, J.L.; de Oliveira, D. Current status and trends in enzymatic nanoimmobilization. J. Mol. Catal. B Enzymatic 2014, 99, 56–67. [Google Scholar] [CrossRef]
- Dumri, K.; Hung Anh, D. Immobilization of Lipase on Silver Nanoparticles via Adhesive Polydopamine for Biodiesel Production. Enzyme 2014, 389739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.Z.; Ching, C.B.; Xu, R. Lipase immobilization on modified zirconia nanoparticles: Studies on the effects of modifiers. Process BioChem. 2009, 44, 1245–1251. [Google Scholar] [CrossRef]
- Zhi, J.; Wang, Y.; Lu, Y.; Ma, J.; Luo, G. In situ preparation of magnetic chitosan/Fe3O4 composite nanoparticles in tiny pools of water-in-oil microemulsion. React. Funct. Polym. 2006, 66, 1552–1558. [Google Scholar] [CrossRef]
- Ghazanfri, M.; Kashefi, M.; Shams, S.; Jaafari, M. Perspective of Fe3O4 nanoparticles role in biomedical applications. Biochem. Res. Int. 2016, 2016, 7840161. [Google Scholar]
- Krajewska, B. Application of chitin- and chitosan-based materials for enzyme immobilizations: A review. Enzyme Microb. Technol. 2004, 35, 126–139. [Google Scholar] [CrossRef]
- Ghadi, A.; Tabandeh, F.; Mahjoub, S.; Mohsenifar, A.; Roshan, F.T.; Alavije, R.S. Fabrication and characterization of core-shell magnetic chitosan nanoparticles as a novel carrier for immobilization of Burkholderia cepacia Lipase. J. Oleo Sci. 2015, 64, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Wang, J. Immobilized lipase on magnetic chitosan microspheres for transesterification of soybean oil. Biomass Bioenerg. 2012, 36, 373–380. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Yang, C.T.; Ching, C.B.; Xu, R. Immobilization of Lipases on Hydrophobilized Zirconia Nanoparticles: Highly Enantioselective and Reusable Biocatalysts. Langmuir 2008, 24, 8877–8884. [Google Scholar]
- Li, X.-S.; Zhu, G.-T.; Luo, Y.-B.; Yuan, B.-F.; Feng, Y.-Q. Synthesis and applications of functionalized magnetic materials in sample preparation. TrAC Trends Anal. Chem. 2013, 45, 233–247. [Google Scholar] [CrossRef]
- Vaghari, H.; Jafarizadeh-Malmiri, H.; Mohammadlou, M.; Berenjian, A.; Anarjan, N.; Jafari, N.; Nasiri, S. Application of magnetic nanoparticles in smart enzyme immobilization. Biotechnol. Lett. 2016, 38, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Zang, X. Immobilized lipase on core–shell structured Fe3O4–MCM-41 nanocomposites as a magnetically recyclable biocatalyst for interesterification of soybean oil and lard. Food Chem. 2016, 194, 1283–1292. [Google Scholar] [CrossRef]
- Rosenholm, J.M.; Zhang, J.; Sun, W.; Gu, H. Large-pore mesoporous silica-coated magnetite core-shell nanocomposites and their relevance for biomedical applications. Microporous Mesoporous Mater. 2011, 145, 14–20. [Google Scholar] [CrossRef]
- López, C.; Cruz-Izquierdo, Á.; Picó, E.A.; García-Bárcena, T.; Villarroel, N.; Llama, M.J.; Serra, J.L. Magnetic biocatalysts and their uses to obtain biodiesel and biosurfactants. Front. Chem. 2014, 2, 1–11. [Google Scholar]
- Jambulingam, R.; Shalma, M.; Shankar, V. Biodiesel production using lipase immobilised functionalized magnetic nanocatalyst from oleaginous fungal lipid. J. Clean. Product. 2019, 215, 245–258. [Google Scholar] [CrossRef]
- Shim, M.; Shi Kam, N.W.; Chen, R.J.; Li, Y.; Dai, H. Functionalization of Carbon Nanotubes for Biocompatibility and biomolecular recognition. Nano Lett. 2002, 2, 285–288. [Google Scholar] [CrossRef]
- Szelwicka, A.; Boncel, S.; Jurczyk, S.; Chrobok, A. Highly efficient synthesis of alkyl levulinates from α-angelica lactone, catalysed with Lewis acidic trifloaluminate ionic liquids supported on carbon nanotubes. ACS Sustain. Chem. Eng. 2019, 7, 5184–5191. [Google Scholar]
- Wang, Z.-G.; Wan, L.-S.; Liu, Z.-M.; Huang, X.-J.; Xu, Z.-K. Enzyme immobilization on electrospun polymer nanofibers: An overview. J. Mol. Catal. B Enzymatic 2009, 56, 189–195. [Google Scholar] [CrossRef]
- Yang, N.; Chen, X.; Ren, T.; Zhang, P.; Yang, D. Carbon nanotube based biosensors. Sens. Actuators B Chem. 2015, 207, 690–715. [Google Scholar] [CrossRef]
- Tan, H.; Feng, W.; Ji, P. Lipase immobilized on magnetic multi-walled carbon nanotubes. Bioresour. Technol. 2012, 115, 172–176. [Google Scholar] [CrossRef]
- Zhao, X.; El-Zahab, B.; Brosnahan, R.; Perry, J.; Wang, P. An organic soluble lipase for water-free synthesis of biodiesel. Appl. BioChem. Biotechnol. 2007, 143, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Wu, G.; Su, F.; Li, K.; Xu, L.; Han, X.; Yan, Y. Lipase oriented-immobilized on dendrimer-coated magnetic multi-walled carbon nanotubes toward catalyzing biodiesel production from waste vegetable oil. Fuel 2016, 178, 172–178. [Google Scholar] [CrossRef]
- Sakai, S.; Liu, Y.; Yamaguchi, T.; Watanabe, R.; Kawabe, M.; Kawakami, K. Production of butyl-biodiesel using lipase physically-adsorbed onto electrospun polyacrylonitrile fibers. Bioresour. Technol. 2010, 101, 7344–7349. [Google Scholar] [CrossRef]
- Yang, X.Y.; Tian, G.; Jiang, N.; Su, B.L. Immobilization technology: A sustainable solution for biofuel cell design. Energy Environ. Sci. 2012, 5, 5540–5563. [Google Scholar] [CrossRef]
- Lu, A.H.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244. [Google Scholar] [CrossRef]
- Sen, T.; Bruce, I.J.; Mercer, T. Fabrication of novel hierarchically ordered porous magnetic nanocomposites for bio-catalysis. Chem. Commun. 2010, 46, 6807–6809. [Google Scholar] [CrossRef] [PubMed]
Lipase | Immobilization Technique | Oil/Fat | Alcohol | Yield (%) | Reaction Conditions | Refs |
---|---|---|---|---|---|---|
Rhizomocur miehei | Physical Adsorption | Olive husk oil | Ethanol | 90.0 | 8 h; EtOH/Oil molar ratio of 2:1; 37 °C | [44] |
Lipozyme-TL IM | Physical Adsorption | Waste cooking oil | Methanol | 95.0 | 4% immob. lipase (wt%); 24 °C; MeOH/Oil molar ratio 4:1; 105 h | [45] |
Pseudomonas cepacian | Physical Adsorption | Jatropha curcas oil | Ethanol | 98.0 | 10% immob. lipase; 40 °C; EtOH/Oil 4:1; 8 h | [46] |
Candida rugosa | Physical Adsorption | Cotton seed oil | Methanol | 98.3 | 5% immob. lipase; 40 °C; MeOH/Oil 12:1; 48 h | [47] |
Candida rugosa | Entrapment | Palm oil | Methanol/Ethanol | 70/85 | 1% immob. lipase; 37 °C; MeOH/Oil molar ratio 14:1; 1 h/1% immob. lipase; 35 °C; EtOH/Oil molar ratio 15:1; 1 h | [53] |
Pseudomonas cepacian | Entrapment | Soybean oil | Methanol/Ethanol | 67/65 | 4.75% immob. lipase; 35 °C; MeOH/Oil molar ratio 7.5:1, 1 h/4.75% immob. lipase; 35 °C; EtOH/Oil molar ratio 15.2:1; 1 h | [54] |
Pseudomonas cepacian | Entrapment | Soybean oil/Waste cooking oil | Methanol | 68 a/67 b | 1.0% immob. lipase; 43.3 °C; MeOH/Oil molar ratio 5:1; 36 h | [55] |
Pseudomonas cepacian | Entrapment | Tallow and grease | Ethanol | 95 | 50 °C; EtOH/Oil molar ratio 4:1; 24 h | [56] |
Candida cylindracea | Covalent Bonding | Camellia oil | Methanol | 99 | 40% immob. lipase; 40 °C; 48 h | [61] |
Rhizopus oryzae | Covalent Bonding | Jatropha curcas oil | Methanol | 51–65 | 30 °C; 4 h | [62] |
Thermomynces lanuginosus | Covalent Bonding | Olive pomace oil | Methanol | 93 | MeOH/Oil molar ratio 6:1;25 °C; 24 h | [63] |
Thermomynces lanuginosus/Pseudomonas flourescens | Covalent Bonding | Babassu/Palm oils | Ethanol | >93 | 45 °C; EtOH/Oil molar ratio 9:1; 48 h/45 °C; EtOH/Oil molar ratio 18:1; 48 h | [60] |
Burkholderia cepacian | Cross-linking | Jatropha curcas oil | Ethanol | 100 | 52.5% immob. Lipase; 35 °C; EtOH/Oil molar ratio 10:1; 24 h | [66] |
Thermomynces lanuginosus | Cross-linking | Canola oil | Methanol | 90 | 40 °C; MeOH/Oil molar ratio 6:1; 24 h | [67] |
Pseudomonas cepacian | Cross-linking | Madhuca indica oil | Ethanol | 92 | 10% immob. lipase; 40 °C; EtOH/Oil molar ratio 4:1; 2.5 h | [68] |
Photobacterium lipolyticum | Cross-linking | Olive oil | Methanol | 64 | 40 °C; MeOH/Oil molar ratio 4:1; 12 h | [69] |
Lipase | Nano-Support | Oil/Fat | Alcohol | Yield (%) | Reaction Conditions | Refs |
---|---|---|---|---|---|---|
Rhizomocur mihei | Porous inorganic silica | Triolein | Methanol | 89 | 10% immob. lipase; 37 °C; MeOH/Oil molar ratio 6:1; 3 h | [79] |
Candida antarctica/Thermomynces lanuginosus/Rhizomucor miehei | SBA-15 functionalized by 3-glycidiloxypropyl trimethylsilane | Canola oil | Methanol | 24/33/34 | 3.8 wt% immob. lipase; 50 °C; MeOH/Oil molar ratio 3:1; 72 h | [80] |
Commercial lipase (EC3.1.1.3.) | Polydopamine functionalized silver nanoparticles | Soybean oil | Methanol | 95 | 40 °C; MeOH/Oil molar ratio 3:1; 6 h | [82] |
Burkholderia cepacian | Chitosan magnetic core-shell nanoparticles | Soybean oil | Methanol | 18.66 | 0.9% immob. lipase; 37 °C; MeOH/Oil molar ratio 3:1; 72 h | [85] |
Candida rugosa | Magnetic chitosan nanoparticles | Soybean oil | Methanol | 87 | 35 °C; MeOH/Oil molar ratio 4:1; 30 h | [86] |
Candida antarctica | Magnetic cross-linked enzyme aggregates | Olive oil | 2-propanol | 30.3 | 1 wt% immob. lipase; 40 °C; 2-Propanol/Oil molar ratio 6:1 | [92] |
NA | (3-aminopropyl)triethoxysilane functionalized magnetic Fe3O4 nanoparticles | Aspergillus niger fungal lipid | Methanol | 85.3 | 6 wt% immob. lipase; 45 °C; MeOH/Oil molar ratio 4:1; 4 h | [93] |
Candida antarctica | Single-walled carbon nanotubes (SWCNTs) | Sunflower oil | Ethanol | 83.4 | 15 wt% immob. lipase; 35 °C; 3.9 μL of ethanol; 4 h | [10] |
Rhizomucor miehei | Polyamidoamine grafted onto magnetic multi-walled carbon nanotubes (mMWCNTs) | Waste cooking oil | tert-butanol | 94 | 6 wt% immob. lipase; 50 °C; 20 wt% tert-butanol; 10 h | [100] |
Pseudomonas cepacian | Nanofibrous membrane of polyacrylate | Soybean oil | Methanol | 90 | 0.35 wt% immob. lipase; 30 °C; MeOH concentration 51 wt%; 24 h | [102] |
Pseudomonas cepacian | Electrospun polyacrylonitrile nanofibers | Rapeseed oil | n-butanol | 94 | n-butanol/Oil molar ratio 3:1; 40 °C; 48 h | [103] |
Burkholderia sp. | Fe3O4 core coated with silica shell and treated with [3-(trimethoxysilyl)propyl]ammonium chloride | Olive oil | Methanol | 90 | 11 wt% immob. lipase; 40 °C; MeOH/Oil molar ratio 4:1; 30 h | [33] |
Candida antarctica | Fe3O4 core coated with silica shell functionalized with (3-glycidoxypropyl) trimethoxy silane) | Waste cooking oil | Methanol | 96 | 70% molecular sieve; 4.5 wt% immb. Lipase; MeOH/Oil molar ratio 3:1; 50 °C; 96 h | [106] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, S.; Puna, J.; Gomes, J. A Review on Bio-Based Catalysts (Immobilized Enzymes) Used for Biodiesel Production. Energies 2020, 13, 3013. https://doi.org/10.3390/en13113013
Santos S, Puna J, Gomes J. A Review on Bio-Based Catalysts (Immobilized Enzymes) Used for Biodiesel Production. Energies. 2020; 13(11):3013. https://doi.org/10.3390/en13113013
Chicago/Turabian StyleSantos, Samuel, Jaime Puna, and João Gomes. 2020. "A Review on Bio-Based Catalysts (Immobilized Enzymes) Used for Biodiesel Production" Energies 13, no. 11: 3013. https://doi.org/10.3390/en13113013
APA StyleSantos, S., Puna, J., & Gomes, J. (2020). A Review on Bio-Based Catalysts (Immobilized Enzymes) Used for Biodiesel Production. Energies, 13(11), 3013. https://doi.org/10.3390/en13113013