A Review of Cognitive Radio Smart Grid Communication Infrastructure Systems
Abstract
:1. Introduction
- To provide an extensive review on the state-of-the-art architectures proposed in the literature and to fulfill the distinct and stringent QoS requirements in SG communication systems.
- The incorporation of fog computing and cloud computing with the aim to support QoS requirements for SG communication systems such as latency and security.
- The identification of possible communication technologies that can mitigate QoS requirement issues such as spectrum efficiency, energy efficiency, and security as latency.
- To propose a hybrid SG communication architecture based on CRNs and 5G mobile technology, with the aim to improve reliability and network efficiency.
2. Related Works
2.1. Traditional Architectures
2.2. The State-of-the-Art Architectures
3. The Next-Generation Power Grid
3.1. Bulk Generation Domain
3.2. Transmission Domain
3.3. Distribution Domain
3.4. Electricity Markets
4. An Overview of Communication Infrastructure
4.1. Wide Area Network
4.2. Neighborhood Area Network
4.3. Home Area Network
4.4. Cognitive Radio Network in SGs
4.5. Issues in Traditional Cloud Servers
4.6. Fog Computing as a Solution
5. Communication Network
5.1. Communication Requirements
5.1.1. Latency
5.1.2. Bandwidth
5.1.3. Security
5.1.4. Reliability
5.2. Communication Technologies
5.2.1. Power Line Communication
5.2.2. Optical Fiber
5.2.3. ZigBee
5.2.4. Wireless Cellular Technologies
6. Proposed Cognitive ICT Infrastructure
6.1. Smart IoT Devices Layer
6.2. Fog and Cloud Layer
7. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Xue, W.; Tao, C. Research on Traditional Power Grid Enterprise Transforming to Energy Internet Enterprise. In Proceedings of the 2nd IEEE Conference Energy International Energy System Integration, Beijing, China, 20–22 October 2018; pp. 1–9. [Google Scholar]
- Cataliotti, A.; Cipriani, G.; Cosentino, V.; Di Cara, D.; Di Dio, V.; Guaiana, S.; Panzavecchia, N.; Tinè, G. A prototypal architecture of a IEEE 21451 network for smart grid applications based on power line communications. IEEE Sens. J. 2015, 15, 2460–2467. [Google Scholar] [CrossRef]
- Bai, X.M.; Jun-xia, M.; Zhu, N.H. Functional analysis of advanced metering infrastructure in smart grid. In Proceedings of the International Conference on Power System Technology (Powercon), Hangzhou, China, 24–28 October 2010; pp. 1–4. [Google Scholar]
- Yu, R.; Zhong, W.; Xie, S.; Zhang, Y.; Zhang, Y. QoS differential scheduling in cognitive-radio based smart grid networks: An adaptive dynamic programming approach. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 435–443. [Google Scholar] [CrossRef]
- Strategic National Smart Grid Vision for the South African Electricity Supply Industry. Available online: https://www.ee.co.za/wp-content/uploads/2017/12/Smart-Grid-Vision-Document-2017.pdf (accessed on 2 May 2020).
- Ma, R.; Chen, H.H.; Huang, Y.R.; Meng, W. Smart grid communication: Its challenges and opportunities. IEEE Trans. Smart Grid 2013, 4, 36–46. [Google Scholar] [CrossRef]
- Fang, X.; Misra, S.; Xue, G.; Yang, D. 2011. Smart grid—The new and improved power grid: A survey. IEEE Commun. Surv. Tutor. 2011, 14, 944–980. [Google Scholar] [CrossRef]
- Kabalci, E.; Kabalci, Y. Smart Grids and Their Communication Systems; Springer: Berlin, Germany, 2019; pp. 1–609. [Google Scholar]
- Song, E.Y.; FitzPatrick, G.J.; Lee, K.B. Smart sensors and standard based interoperability in smart grids. IEEE Sens. J. 2017, 17, 7723–7730. [Google Scholar] [CrossRef]
- Zhu, J. Communication network for smart grid interoperability. In Proceedings of the IEEE International Conference on Communication Software and Networks (ICCSN), Chengdu, China, 6–7 June 2015; pp. 260–265. [Google Scholar]
- Ye, F.; Hu, R.Q.; Sun, H. Smart Grid Communication Infrastructures: Big Data, Cloud Computing, and Security; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 1–307. [Google Scholar]
- Kazičková, T.; Buhnova, B. ICT architecture for the Smart Grid: Concept overview. In Proceedings of the Smart Cities Symposium Prague (SCSP), Prague, Czech Republic, 26–27 May 2016; pp. 1–4. [Google Scholar]
- Garau, M.; Anedda, M.; Desogus, C.; Ghiani, E.; Murroni, M.; Celli, G. A 5G cellular technology for distributed monitoring and control in smart grid. In Proceedings of the IEEE international symposium on broadband multimedia systems and broadcasting (BMSB), Caligari, Italy, 6–7 June 2017; pp. 1–6. [Google Scholar]
- Abdrabou, A. A Wireless Communication Architecture for Smart Grid Distribution Networks. IEEE Syst. J. 2016, 10, 251–261. [Google Scholar] [CrossRef]
- Moslehi, K.; Kumar, R. A Reliability Perspective of the Smart Grid. IEEE Trans. Smart Grid 2010, 1, 57–64. [Google Scholar] [CrossRef]
- Khan, A.A.; Rehmani, M.H.; Reisslein, M. Cognitive radio for smart grids: Survey of architectures, spectrum sensing mechanisms, and networking protocols. IEEE Commun. Surv. Tutor. 2016, 18, 860–898. [Google Scholar] [CrossRef]
- Nazari, M.H.; Grijalva, S.; Egerstedt, M. Communication-Failure-Resilient Distributed Frequency Control in Smart Grids: Part I: Architecture and Distributed Algorithms. IEEE Trans. Power Syst. 2020, 35, 1317–1326. [Google Scholar] [CrossRef]
- Eder-Neuhauser, P.; Zseby, T.; Fabini, J. Resilience and security: A qualitative survey of urban smart grid architectures. IEEE Access 2016, 4, 839–848. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, R.Q.; Qian, Y. Scalable distributed communication architectures to support advanced metering infrastructure in smart grid. IEEE Trans. Parallel Distrib. Syst. 2012, 23, 1632–1642. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yi, P. Security framework for wireless communications in smart distribution grid. IEEE Trans. Smart Grid 2011, 2, 809–818. [Google Scholar] [CrossRef]
- Salvadori, F.; Gehrke, C.S.; de Oliveira, A.C.; de Campos, M.; Sausen, P.S. Smart grid infrastructure using a hybrid network architecture. IEEE Trans. Smart Grid 2013, 4, 1630–1639. [Google Scholar] [CrossRef]
- IEEE. IEEE Guide for Smart Grid Interoperability of Energy Technology and Information Technology Operation with the Electric Power System (EPS), End-Use Applications, and Loads; IEEE Std 2030-2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–126. Available online: https://ieeexplore.ieee.org/document/6018239 (accessed on 13 March 2020).
- Molokomme, D.N.; Chabalala, C.S.; Bokoro, P. A survey on information and communications technology infrastructure for smart grids. In Proceedings of the IEEE 2nd Wireless Africa Conference (WAC), Pretoria, South Africa, 18–20 August 2019; pp. 1–6. [Google Scholar]
- Siozios, K.; Anagnostos, D.; Soudris, D.; Kosmatopoulos, E. IoT for Smart Grids; Springer: Cham, Switzerland, 2019; pp. 1–282. [Google Scholar]
- Zheng, L.; Parkinson, S.; Wang, D.; Cai, L.; Crawford, C. Energy efficient communication networks design for demand response in smart grid. In Proceedings of the International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 9–11 November 2011; pp. 1–6. [Google Scholar]
- Wang, K.; Li, H.; Maharjan, S.; Zhang, Y.; Guo, S. Green energy scheduling for demand side management in the smart grid. IEEE Trans. Green Commun. Netw. 2018, 2, 596–611. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, B.; Wang, J.; Zhu, Y.; Hu, J. Application of power line communication in smart power consumption. ISPLC 2010, 303–307. [Google Scholar] [CrossRef]
- Luhua, Z.; Zhonglin, Y.; Sitong, W.; Ruiming, Y.; Hui, Z.; Qingduo, Y. Effects of Advanced Metering Infrastructure (AMI) on Relations of Power Supply and Application in Smart Grid; IEEE: Piscataway, NJ, USA, 2010; pp. 1–5. [Google Scholar]
- Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G.P. A survey on smart grid potential applications and communication requirements. IEEE Trans. Ind. Inform. 2012, 9, 28–42. [Google Scholar] [CrossRef] [Green Version]
- Ekanayake, J.; Liyanage, K.; Wu, J.; Yokoyama, A.; Jenkins, N. Smart Grid Technology and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 1–277. [Google Scholar]
- Abdulla, G. The deployment of advanced metering infrastructure. In Proceedings of the 2015 First Workshop on Smart Grid and Renewable Energy (SGRE), Doha, Qatar, 22–23 March 2015; pp. 1–3. [Google Scholar]
- Hongbin, Z.; Jingru, L.; Weihong, Y.; Ye, Z. The Study on Evaluating Indicator System of the Pilot Project of Smart Grid; IEEE: Piscataway, NJ, USA, 2010; pp. 1–7. [Google Scholar]
- Song, Y.; Li, J. Research on the assessment index system for pilot projects of smart substations. IEEE PES Innov. Smart Grid Technol. 2012, 1–5. [Google Scholar] [CrossRef]
- Simmhan, Y.; Aman, S.; Kumbhare, A.; Liu, R.; Stevens, S.; Zhou, Q.; Prasanna, V. Cloud based software platform for big data analytics in smart grids. Comput. Sci. Eng. 2013, 15, 38–47. [Google Scholar] [CrossRef]
- Saghezchi, F.B.; Mantas, G.; Ribeiro, J.; Al-Rawi, M.; Mumtaz, S.; Rodriguez, J. Towards a secure network architecture for smart grids in 5G era. In Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017; pp. 121–126. [Google Scholar]
- Chabalala, C.S.; Takawira, F. Hybrid channel assembling and power allocation for multichannel spectrum sharing wireless networks. In Proceedings of the Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6. [Google Scholar]
- Huang, J.; Wang, H.; Qian, Y.; Wang, C. Priority based traffic scheduling and utility optimization for cognitive radio communication infrastructure based smart grid. IEEE Trans. Smart Grid 2013, 4, 78–86. [Google Scholar] [CrossRef]
- Cacciapuoti, A.S.; Caleffi, M.; Marino, F.; Paura, L. Mobile smart grids: Exploiting the TV white space in urban scenarios. IEEE Access 2016, 4, 7199–7211. [Google Scholar] [CrossRef] [Green Version]
- Bansal, P.; Singh, A. Smart metering in smart grid framework: A review. In Proceedings of the 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC), Waknaghat, India, 22–24 December 2016; pp. 174–176. [Google Scholar]
- Kumari, A.; Tanwar, S.; Tyagi, S.; Kumar, N.; Obaidat, M.S.; Rodrigues, J.J. Fog computing for smart grid systems in the 5G environment: Challenges and solutions. IEEE Wirel. Commun. 2019, 26, 47–53. [Google Scholar] [CrossRef]
- Hassebo, A.; Mohamed, A.A.; Dorsinville, R.; Ali, M.A. 5G based converged electric power grid and ict infrastructure. In Proceedings of the 2018 IEEE 5G World Forum (5GWF), Silicon Valley, CA, USA, 9–11 July 2018; pp. 33–37. [Google Scholar]
- Erol-Kantarci, M.; Mouftah, H.T. Energy-Efficient Information and Communication Infrastructures in the Smart Grid: A Survey on Interactions and Open Issues. IEEE Commun. Surv. Tutor. 2015, 17, 179–197. [Google Scholar] [CrossRef]
- Vineetha, C.P.; Babu, C.A. Smart grid challenges, issues and solutions. In Proceedings of the International Conference on Intelligent Green Building and Smart Grid (IGBSG), Taipei, Taiwan, 23–25 April 2014; pp. 1–4. [Google Scholar]
- Azizivahed, A.; Naderi, E.; Narimani, H.; Fathi, M.; Narimani, M.R. A new bi-objective approach to energy management in distribution networks with energy storage systems. IEEE Trans. Sustain. Energy 2017, 9, 56–64. [Google Scholar] [CrossRef]
- Karandeh, R.; Lawanson, T.; Cecchi, V. Impact of operational decisions and size of battery energy storage systems on demand charge reduction. IEEE Milan PowerTech 2019, 1–6. [Google Scholar] [CrossRef]
- Yan, Y.; Qian, Y.; Sharif, H.; Tipper, D. A Survey on Smart Grid Communication Infrastructures: Motivations, Requirements and Challenges. IEEE Commun. Surv. Tutor. 2013, 15, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Kansal, P.; Bose, A. Bandwidth and Latency Requirements for Smart Transmission Grid Applications. IEEE Trans. Smart Grid 2012, 3, 1344–1352. [Google Scholar] [CrossRef]
- Ghasempour, A.; Gunther, J.H. Finding the optimal number of aggregators in machine-to-machine advanced metering infrastructure architecture of smart grid based on cost, delay, and energy consumption. In Proceedings of the 13th IEEE Annual Consumer Communications Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2016; pp. 960–963. [Google Scholar]
- Kumar, P.; Lin, Y.; Bai, G.; Paverd, A.; Dong, J.S.; Martin, A. Smart grid metering networks: A survey on security, privacy and open research issues. IEEE Commun. Surv. Tutor. 2019, 21, 2886–2927. [Google Scholar] [CrossRef] [Green Version]
- Kavithakumari, K.S.; Paul, P.P.; CatherineAmalaPriya, E. Advance metering infrastructure for smart grid using GSM. In Proceedings of the Third International Conference on Science Technology Engineering & Management (ICONSTEM), Dubai, United Arab Emirates, 15–16 February 2017; pp. 619–622. [Google Scholar]
- Zhang, Y.; Chen, M. The Development of Wirekess Networks. In Cloud Based 5G Wireless Networks; Zdonik, S., Shekar, S., Katz, J., Wu, X., Jain, L.C., Padua, D., Shen, X., Furht, B., Subrahmanian, V.S., Hebert, M., Eds.; Springer Nature, Gewerbestrasse: Cham, Switzerland, 2016; pp. 1–7. [Google Scholar]
- Mohammadi, M.; Al-Fuqaha, A. Enabling cognitive smart cities using big data and machine learning: Approaches and challenges. IEEE Commun. Mag. 2018, 56, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Gözde, H.; Taplamacıoğlu, M.C.; Arı, M.; Shalaf, H. 4G/LTE technology for smart grid communication infrastructure. In Proceedings of the 3rd International Istanbul Smart Grid Congress and Fair (ICSG), Istanbul, Turkey, 29–30 April 2015; pp. 1–4. [Google Scholar]
- Dragičević, T.; Siano, P.; Prabaharan, S.R. Future generation 5G wireless networks for smart grid: A comprehensive review. Energies 2019, 12, 2140. [Google Scholar]
- Han, Y.; Wang, J.; Zhao, Q.; Han, P. Cognitive information communication network for smart grid. In Proceedings of the 2012 IEEE International Conference on Information Science and Technology, Wuhan, China, 23–25 March 2012; pp. 847–850. [Google Scholar]
- Yu, R.; Zhang, Y.; Gjessing, S.; Yuen, C.; Xie, S.; Guizani, M. Cognitive radio based hierarchical communications infrastructure for smart grid. IEEE Netw. 2011, 25, 6–14. [Google Scholar] [CrossRef]
- Kumar, N. A Study on Green Energy Powered Cognitive Radio Network for Communication Network Architecture of Smart Grid. In Proceedings of the 3rd International Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity (CIPECH), Ghaziabad, India, 1–2 November 2018; pp. 3–7. [Google Scholar]
- Dehalwar, V.; Kalam, A.; Zayegh, A. Infrastructure for real-time communication in smart grid. In Proceedings of the Saudi Arabia Smart Grid Conference (SASG), Jeddah, Saudi Arabia, 15–17 December 2014; pp. 1–4. [Google Scholar]
- Holker, D.; Brettschneider, D.; Toenjes, R.; Sonnenschein, M. Choosing communication technologies for distributed energy management in the smart grid. In Proceedings of the IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Torino, Italy, 26–29 September 2017; pp. 1–6. [Google Scholar]
- Baringo, A.; Baringo, L.; Arroyo, J.M. Day-Ahead Self-Scheduling of a Virtual Power Plant in Energy and Reserve Electricity Markets Under Uncertainty. IEEE Trans. Power Syst. 2019, 34, 1881–1894. [Google Scholar] [CrossRef]
- Azizivahed, A.; Karandeh, R.; Cecchi, V.; Naderi, E.; Li, L.; Zhang, J. Multi-Area Dynamic Economic Dispatch Considering Water Consumption Minimization, Wind Generation, and Energy Storage System. In Proceedings of the IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 17–20 February 2020; pp. 1–5. [Google Scholar]
- Eriksson, M.; Armendariz, M.; Vasilenko, O.O.; Saleem, A.; Nordström, L. Multiagent based distribution automation solution for self-healing grids. IEEE Trans. Ind. Electron. 2014, 62, 2620–2628. [Google Scholar] [CrossRef]
- Gore, R.N.; Valsan, S.P. Wireless communication technologies for smart grid (WAMS) deployment. In Proceedings of the IEEE International Conference on Industrial Technology (ICIT), Lyon, France, 19–22 February 2018; pp. 1326–1331. [Google Scholar]
- Moongilan, D. 5G wireless communications (60 GHz band) for smart grid—An EMC perspective. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility (EMC), Ottawa, ON, Canada, 25–29 July 2016; pp. 689–694. [Google Scholar]
- Song, I.K.; Jung, W.W.; Kim, J.Y.; Yun, S.Y.; Choi, J.H.; Ahn, S.J. Operation schemes of smart distribution networks with distributed energy resources for loss reduction and service restoration. IEEE Trans. Smart Grid 2012, 4, 367–374. [Google Scholar] [CrossRef]
- Rosato, A.; Panella, M.; Araneo, R.; Andreotti, A. A Neural Network Based Prediction System of Distributed Generation for the Management of Microgrids. IEEE Trans. Ind. Appl. 2019, 55, 7092–7102. [Google Scholar] [CrossRef]
- Li, B.; Zhang, B.; Guo, J.; Yao, J. Study on Cognitive Radio Based Wireless Access Communication of Power Line and Substation Monitoring System of Smart Grid. In Proceedings of the International Conference on Computer Science and Service System, Nanjing, China, 11–13 August 2012; pp. 1146–1149. [Google Scholar]
- Wang, Q.; Zhao, F.; Chen, T. A Base Station DTX Scheme for OFDMA Cellular Networks Powered by the Smart Grid. IEEE Access 2018, 6, 63442–63451. [Google Scholar] [CrossRef]
- Bouabdellah, M.; El Bouanani, F.; Sofotasios, P.C.; Muhaidat, S.; Da Costa, D.B.; Mezher, K.; Ben-Azza, H.; Karagiannidis, G.K. Cooperative Energy Harvesting Cognitive Radio Networks With Spectrum Sharing and Security Constraints. IEEE Access 2019, 7, 173329–173343. [Google Scholar] [CrossRef]
- Gungor, V.C.; Sahin, D. Cognitive Radio Networks for Smart Grid Applications: A Promising Technology to Overcome Spectrum Inefficiency. IEEE Veh. Technol. Mag. 2012, 7, 41–46. [Google Scholar] [CrossRef]
- Komninos, N.; Philippou, E.; Pitsillides, A. Survey in Smart Grid and Smart Home Security: Issues, Challenges and Countermeasures. IEEE Commun. Surv. Tutor. 2014, 16, 1933–1954. [Google Scholar] [CrossRef]
- Jha, I.S.; Sen, S.; Agarwal, V. Advanced metering infrastructure analytics—A Case Study. In Proceedings of the 2014 Eighteenth National Power Systems Conference (NPSC), Guwahati, India, 18–20 December 2014; pp. 1–6. [Google Scholar]
- Yu, K.; Arifuzzaman, M.; Wen, Z.; Zhang, D.; Sato, T. A Key Management Scheme for Secure Communications of Information Centric Advanced Metering Infrastructure in Smart Grid. IEEE Trans. Instrum. Meas. 2015, 64, 2072–2085. [Google Scholar]
- Barai, G.R.; Krishnan, S.; Venkatesh, B. Smart metering and functionalities of smart meters in smart grid—A review. In Proceedings of the 2015 IEEE Electrical Power and Energy Conference (EPEC), London, ON, Canada, 26–28 October 2015; pp. 138–145. [Google Scholar]
- Cacciapuoti, A.S.; Caleffi, M.; Marino, F.; Paura, L. Enabling Smart Grid via TV White Space Cognitive Radio. In Proceedings of the 2015 IEEE International Conference on Communication Workshop (ICCW), London, UK, 8–12 June 2015; pp. 568–572. [Google Scholar]
- Gao, J.; Wang, J.; Wang, B.; Song, X. Cognitive radio based communication network architecture for smart grid. In Proceedings of the 2012 IEEE International Conference on Information Science and Technology, Wuhan, China, 23–25 March 2012; pp. 886–888. [Google Scholar]
- Li, L.; Zhou, X.; Xu, H.; Li, G.Y.; Wang, D.; Soong, A. Energy-Efficient Transmission in Cognitive Radio Networks. In Proceedings of the 2010 7th IEEE Consumer Communications and Networking Conference, Las Vegas, NV, USA, 9 January 2010; pp. 1–5. [Google Scholar]
- Olawole, A.A.; Takawira, F.; Oyerinde, O.O. Cooperative Spectrum Sensing in Multichannel Cognitive Radio Networks with Energy Harvesting. IEEE Access 2019, 7, 84784–84802. [Google Scholar] [CrossRef]
- Siddiqui, I.F.; Lee, S.U.; Abbas, A.; Bashir, A.K. Optimizing Lifespan and Energy Consumption by Smart Meters in Green-Cloud-Based Smart Grids. IEEE Access 2017, 5, 20934–20945. [Google Scholar] [CrossRef]
- Zheng, L.; Hu, Y.; Yang, C. Design and Research on Private Cloud Computing Architecture to Support Smart Grid. In Proceedings of the 2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2011; pp. 159–161. [Google Scholar]
- Maheshwari, K.; Birman, K.; Wozniak, J.; Zandt, D.V. Evaluating Cloud Computing Techniques for Smart Power Grid Design Using Parallel Scripting. In Proceedings of the 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, Delft, The Netherlands, 13–16 May 2013; pp. 319–326. [Google Scholar]
- Wang, P.; Chen, X.; Sun, Z. Performance Modeling and Suitability Assessment of Data Center Based on Fog Computing in Smart Systems. IEEE Access 2018, 6, 29587–29593. [Google Scholar] [CrossRef]
- Okay, F.Y.; Ozdemir, S. A Fog Computing Based Smart Grid Model. In Proceedings of the 2016 International Symposium on Networks, Computers and Communications (ISNCC), Yasmine Hammamet, Tunisia, 11–13 May 2016; pp. 1–6. [Google Scholar]
- Hao, H.; Wang, Y.; Shi, Y.; Li, Z.; Wu, Y.; Li, C. IoT-G: A Low-Latency and High-Reliability Private Power Wireless Communication Architecture for Smart Grid. In Proceedings of the 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Beijing, China, 21–23 Octorber 2019; pp. 1–6. [Google Scholar]
- Li, H.; Lai, L.; Zhang, W. Communication Requirement for Reliable and Secure State Estimation and Control in Smart Grid. IEEE Trans. Smart Grid 2011, 2, 476–486. [Google Scholar] [CrossRef]
- Zaballos, A.; Vallejo, A.; Selga, J.M. Heterogeneous communication architecture for the smart grid. IEEE Netw. 2011, 25, 30–37. [Google Scholar] [CrossRef]
- Meng, W.; Ma, R.; Chen, H. Smart grid neighborhood area networks: A survey. IEEE Netw. 2014, 28, 24–32. [Google Scholar] [CrossRef]
- Mortaji, H.; Ow, S.H.; Moghavvemi, M.; Almurib, H.A.F. Load Shedding and Smart-Direct Load Control Using Internet of Things in Smart Grid Demand Response Management. IEEE Trans. Ind. Appl. 2017, 53, 5155–5163. [Google Scholar] [CrossRef]
- Kuzlu, M.; Pipattanasomporn, M. Assessment of communication technologies and network requirements for different smart grid applications. In Proceedings of the IEEE PES Innovative Smart Grid Technologies Conference, Sao Paulo, Brazil, 15–17 April 2013; pp. 1–6. [Google Scholar]
- Sun, H.; Nallanathan, A.; Tan, B.; Thompson, J.S.; Jiang, J.; Poor, H.V. Relaying technologies for smart grid communications. IEEE Wirel. Commun. 2012, 19, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Kalalas, C.; Thrybom, L.; Alonso-Zarate, J. Cellular Communications for Smart Grid Neighborhood Area Networks: A Survey. IEEE Access 2016, 4, 1469–1493. [Google Scholar] [CrossRef]
- Wikström, G.; Torsner, J.; Kronander, J.; Al-Saadeh, O.; Chernogorov, F.; Bag, G.; Neander, J.; Landernäs, K.; Hovila, P. Wireless Protection of Power Grids over a 5G Network. In Proceedings of the 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), Bangkok, Thailand, 19–23 March 2019; pp. 976–981. [Google Scholar]
- Cosovic, M.; Tsitsimelis, A.; Vukobratovic, D.; Matamoros, J.; Anton-Haro, C. 5G Mobile Cellular Networks: Enabling Distributed State Estimation for Smart Grids. IEEE Commun. Mag. 2017, 55, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Sutton, G.J.; Zeng, J.; Liu, R.P.; Ni, W.; Nguyen, D.N.; Jayawickrama, B.A.; Huang, X.; Abolhasan, M.; Zhang, Z.; Dutkiewicz, E.; et al. Enabling technologies for ultra-reliable and low latency communications: From PHY and MAC layer perspectives. IEEE Commun. Surv. Tutor. 2019, 21, 2488–2524. [Google Scholar] [CrossRef]
- Pirak, C.; Sangsuwan, T.; Buayairaksa, S. Recent advances in communication technologies for smart grid application: A review. In Proceedings of the 2014 International Electrical Engineering Congress (iEECON), Pattaya City, Thailand, 19–21 March 2014; pp. 1–4. [Google Scholar]
- Hassan, N.U.; Tushar, W.; Yuen, C.; Kerk, S.G.; Oh, S.W. Guaranteeing QoS Using Unlicensed TV White Spaces for Smart Grid Applications. IEEE Wirel. Commun. 2017, 24, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Islam, T.; Hashem, M.M.A. A big data management system for providing real time services using fog infrastructure. In Proceedings of the 2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), Penang Island, Malaysia, 28–29 April 2018; pp. 85–89. [Google Scholar]
- Mohsenian-Rad, A.; Leon-Garcia, A. Coordination of Cloud Computing and Smart Power Grids. In Proceedings of the 2010 First IEEE International Conference on Smart Grid Communications, Gaithersburg, MD, USA, 4–6 Octorber 2010; pp. 368–372. [Google Scholar]
- Markakis, E.; Mastorakis, G.; Mavromoustakis, C.X.; Pallis, E. Cloud and Fog Computing in 5G Mobile Networks, Emerging Advances and Applications; The Institution of Engineering and Technology: London, UK, 2017; pp. 1–425. [Google Scholar]
- Sinaga, K.P.; Yang, M. Unsupervised K-Means Clustering Algorithm. IEEE Access 2020, 8, 80716–80727. [Google Scholar] [CrossRef]
- Hiew, Y.Y.; Aripin, N.M.; Din, N.M. Performance of cognitive smart grid communication in home area network. In Proceedings of the 2014 IEEE 2nd International Symposium on Telecommunication Technologies (ISTT), Langkawi, Malaysia, 24–26 November 2014; pp. 417–422. [Google Scholar]
- Niyato, D.; Xiao, L.; Wang, P. Machine-to-machine communications for home energy management system in smart grid. IEEE Commun. Mag. 2011, 49, 53–59. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molokomme, D.N.; Chabalala, C.S.; Bokoro, P.N. A Review of Cognitive Radio Smart Grid Communication Infrastructure Systems. Energies 2020, 13, 3245. https://doi.org/10.3390/en13123245
Molokomme DN, Chabalala CS, Bokoro PN. A Review of Cognitive Radio Smart Grid Communication Infrastructure Systems. Energies. 2020; 13(12):3245. https://doi.org/10.3390/en13123245
Chicago/Turabian StyleMolokomme, Daisy Nkele, Chabalala S. Chabalala, and Pitshou N. Bokoro. 2020. "A Review of Cognitive Radio Smart Grid Communication Infrastructure Systems" Energies 13, no. 12: 3245. https://doi.org/10.3390/en13123245
APA StyleMolokomme, D. N., Chabalala, C. S., & Bokoro, P. N. (2020). A Review of Cognitive Radio Smart Grid Communication Infrastructure Systems. Energies, 13(12), 3245. https://doi.org/10.3390/en13123245