Cost and Energy Reduction of a New nZEB Wooden Building
Abstract
:1. Introduction
2. Literature Review
3. Methods
3.1. Description of The Case Study Building
3.2. Design and Construction Process
3.3. Indoor Climate and Energy Simulations
- Indoor temperature heating set point 21 °C;
- Air flow rate of supply and exhaust ventilation during occupied hours ±1 h before and after 3.0 l/(s·m2), 3.6 h−1. Supply air temperature 18 °C;
- Standard use of domestic hot water (DHW): 15 kWh/(m2∙a), i.e., 258 l/(m2·a) at ΔT = 50 K;
- Standard use of electricity: for appliances and lighting 12.51 kWh/(m2∙a); for circulation pumps 0.5 kWh/(m2∙a);
- Internal heat gains: inhabitants 8 W/m2 with a usage rate 0.4 (representing average occupancy 4.4 m2 per person); appliances and equipment: 4 W/m2 with usage rate 0.4; lighting 12 W/m2 with a usage rate 0.4.
- Estonian TRY HDD 4160 °C/d at ti +17 °C.
- electricity 2.0;
- district heating (DH) 0.9;
- efficient district heating (eff DH) 0.65.
3.4. Cost Effectiveness Calculations
4. Results and Discussion
4.1. The Design and Construction
- First: design and later construction separately;
- Second: integrated delivery (design + construction together) with a target price.
4.2. Energy Performance Calculations
4.3. Calculations of Lifecycle Costs
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- EPBD. Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency. Off. J. Eur. Union 2018, 156. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L0844&from=EN (accessed on 26 June 2020).
- Hamdy, M.; Hasan, A.; Siren, K. A multi-stage optimization method for cost-optimal and nearly-zero-energy building solutions in line with the EPBD-recast 2010. Energy Build. 2013, 56, 189–203. [Google Scholar] [CrossRef]
- Kurnitski, J.; Saari, A.; Kalamees, T.; Vuolle, M.; Niemelä, J.; Tark, T. Cost optimal and nearly zero energy performance requirements for buildings in Estonia. Est. J. Eng. 2013, 19, 183–202. [Google Scholar] [CrossRef]
- Kalamees, T.; Lupisek, A.; Morck, O.C.; Borodinecs, A.; Almeida, M.G.; Rovers, R.; Op’t Veld, P.; Kuusk, K.; Silva, S.M.; Silva, S.M. What kind of heat loss requirements nZEB and deep renovation sets for building envelope? In Central Europe Towards Sustainable Building 2016: Innovations for Sustainable Future, CESB 2016; 2016; pp. 137–144. Available online: https://explore.openaire.eu/search/publication?articleId=od_______307::73d66cb985ff7685f4ab969881b48200 (accessed on 26 June 2020).
- Fu, X.; Qian, X.; Wang, L. Energy Efficiency for Airtightness and Exterior Wall Insulation of Passive Houses in Hot Summer and Cold Winter Zone of China. Sustainability 2017, 9, 1097. [Google Scholar] [CrossRef] [Green Version]
- Harkouss, F.; Fardoun, F.; Biwole, P.H. Optimization approaches and climates investigations in NZEB—A review. In Building Simulation; Tsinghua University Press: Beijing, China, 2018; Volume 11, pp. 923–952. Available online: https://link.springer.com/article/10.1007/s12273-018-0448-6 (accessed on 26 June 2020). [CrossRef]
- Tabrizi, A.; Sanguinetti, P. Life-cycle cost assessment and energy performance evaluation of NZEB enhancement for LEED-rated educational facilities. Adv. Build. Energy Res. 2015, 9, 267–279. [Google Scholar] [CrossRef]
- Arumägi, E.; Kalamees, T. Design of the first net-zero energy buildings in Estonia. Sci. Technol. Built Environ. 2016, 22, 1039–1049. [Google Scholar] [CrossRef]
- Rey-Hernández, J.M.; Velasco-Gómez, E.; José-Alonso, J.F.S.; Tejero-González, A.; Rey-Martínez, F.J. Energy Analysis at a Near Zero Energy Building. A Case-Study in Spain. Energies 2018, 11, 857. [Google Scholar] [CrossRef] [Green Version]
- Garcia, J.; Kranzl, L. Ambition Levels of Nearly Zero Energy Buildings (nZEB) Definitions: An Approach for Cross-Country Comparison. Buildings 2018, 8, 143. [Google Scholar] [CrossRef] [Green Version]
- Pikas, E.; Thalfeldt, M.; Kurnitski, J.; Liias, R. Extra cost analyses of two apartment buildings for achieving nearly zero and low energy buildings. Energy 2015, 84, 623–633. [Google Scholar] [CrossRef]
- Alanne, K.; Schade, J.; Martinac, I.; Saari, A.; Jokisalo, J.; Kalamees, T. Economic viability of energy-efficiency measures in educational buildings in Finland. Adv. Build. Energy Res. 2013, 7, 120–127. [Google Scholar] [CrossRef]
- Apollo, M.; Miszewska-Urbańska, E. Influence of passive house technology on time and cost of construction investment. E3S Web Conf. 2018, 44, 1–8. [Google Scholar] [CrossRef]
- Colclough, S.; Kinnane, O.; Hewitt, N.; Griffiths, P. Investigation of nZEB social housing built to the Passive House standard. Energy Build. 2018, 179, 344–359. [Google Scholar] [CrossRef]
- Zinzi, M.; Mattoni, B. Assessment of construction cost reduction of nearly zero energy dwellings in a life cycle perspective. Appl. Energy 2019, 251, 113326. [Google Scholar] [CrossRef] [Green Version]
- Sankelo, P.; Jokisalo, J.; Nyman, J.; Vinha, J.; Sirén, K. Cost-optimal energy performance measures in a new daycare building in cold climate. Int. J. Sustain. Energy 2019, 38, 104–122. [Google Scholar] [CrossRef]
- Saari, A.; Kalamees, T.; Jokisalo, J.; Michelsson, R.; Alanne, K.; Kurnitski, J. Financial viability of energy-efficiency measures in a new detached house design in Finland. Appl. Energy 2012, 92, 76–83. [Google Scholar] [CrossRef]
- Bostanciolu, E.; Bostancioğlu, B. Architectural Science Review Effect of building shape on a residential building’s construction, energy and life cycle costs Effect of building shape on a residential building’s construction, energy and life cycle costs. Archit. Sci. Rev. 2010, 53, 441–467. [Google Scholar] [CrossRef]
- Zinzi, M.; Mattoni, B.; Bisegna, F. Survey and solutions for potential cost reduction in the design and construction process of nearly zero energy multi-family houses. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Bari, Italy, 5–7 September 2019. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Hu, M.; Yang, X.; Amati, A.; Tukker, A. Life cycle greenhouse gas emission and cost analysis of prefabricated concrete building façade elements. J. Ind. Ecol. 2020, jiec.12991. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Fung, I.W.H.; Sing, M.C.P.; Ogunlana, S.O. Best practice of prefabrication implementation in the Hong Kong public and private sectors. J. Clean. Prod. 2015, 109, 216–231. [Google Scholar] [CrossRef]
- Hu, M. A Building Life-Cycle Embodied Performance Index—The Relationship between Embodied Energy, Embodied Carbon and Environmental Impact. Energies 2020, 13, 1905. [Google Scholar] [CrossRef] [Green Version]
- Hoxha, E.; Habert, G.; Lasvaux, S.; Chevalier, J.; Le Roy, R. Influence of construction material uncertainties on residential building LCA reliability. J. Clean. Prod. 2017, 144, 33–47. [Google Scholar] [CrossRef]
- Guo, H.; Liu, Y.; Meng, Y.; Huang, H.; Sun, C.; Shao, Y. A Comparison of the Energy Saving and Carbon Reduction Performance between Reinforced Concrete and Cross-Laminated Timber Structures in Residential Buildings in the Severe Cold Region of China. Sustainability 2017, 9, 1426. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Guo, H.; Sun, C.; Chang, W.-S. Assessing Cross Laminated Timber (CLT) as an Alternative Material for Mid-Rise Residential Buildings in Cold Regions in China—A Life-Cycle Assessment Approach. Sustainability 2016, 8, 1047. [Google Scholar] [CrossRef] [Green Version]
- Lien, A.G.; Lolli, N. Costs and procurement for cross-laminated timber in mid-rise buildings. J. Sustain. Archit. Civ. Eng. 2019, 25, 43–52. [Google Scholar] [CrossRef] [Green Version]
- EVS 932, “Construction Design Documents,” Tallinn. 2017. Available online: https://www.evs.ee/en/evs-932-2017 (accessed on 26 June 2020).
- EVS 885, “Classification of Construction Costs,” Tallinn. 2005. Available online: https://www.evs.ee/en/evs-885-2005 (accessed on 26 June 2020).
- Procurement Register. 2020. Available online: https://riigihanked.riik.ee/rhr-web/#/procurement/714146/general-info (accessed on 26 June 2020).
- EQUA Simulation AB. IDA-ICE 4.8. Building Performance Simulation Tool. 2018. Available online: https://www.equa.se/en/ida-ice (accessed on 26 June 2020).
- Achermann, M. Validation of IDA ICE, Version 2.11.06 with IEA Task 12—Envelope BESTEST. 2000. Available online: http://www.equaonline.com/iceuser/validation/old_stuff/BESTEST_Report.pdf (accessed on 26 June 2020).
- Equa Simulation AB. Validation of IDA Indoor Climate and Energy 4.0 Build 4 with Respect to ANSI/ASHRAE Standard 140-2004; Equa Simulation AB: Solna, Sweden, 2010. [Google Scholar]
- Kuusk, K.; Kalamees, T. Retrofit cost-effectiveness: Estonian apartment buildings. Build. Res. Inf. 2016, 44, 1–15. [Google Scholar] [CrossRef]
- Napp, M.; Kalamees, T. Energy use and indoor climate of conservation heating, dehumidification and adaptive ventilation for the climate control of a medieval church in a cold climate. Energy Build. 2015, 108, 61–71. [Google Scholar] [CrossRef]
- Simanic, B.; Nordquist, B.; Bagge, H.; Johansson, D. Predicted and measured user-related energy usage in newly built low-energy schools in Sweden. J. Build. Eng. 2020, 29, 101142. [Google Scholar] [CrossRef]
- Hirvonen, J.; Jokisalo, J.; Heljo, J.; Kosonen, R. Towards the EU Emission Targets of 2050: Cost-Effective Emission Reduction in Finnish Detached Houses. Energies 2019, 12, 4395. [Google Scholar] [CrossRef] [Green Version]
- Hamburg, A.; Kuusk, K.; Mikola, A.; Kalamees, T. Realisation of energy performance targets of an old apartment building renovated to nZEB. Energy 2019, 194, 116874. [Google Scholar] [CrossRef]
- MTMm nr 58. Hoonete Energiatõhususe Arvutamise Metoodika (Methodology for Calculating the Energy Performance of Buildings). 2015. Available online: https://www.riigiteataja.ee/akt/109062015021 (accessed on 26 June 2020).
- Kalamees, T.; Kurnitski, J. Estonian climate analysis for selecting the test reference year. In HB 2006—Healthy Buildings: Creating a Healthy Indoor Environment for People, Proceedings of the Healthy Buildings 2006, Lisboa, Portugal, 4–8 June 2006; 2006; Volume 5, pp. 207–212. Available online: https://www.etis.ee/Portal/Publications/Display/f5852b25-92db-4c28-9cef-94c2374efbaa (accessed on 26 June 2020).
- EC 2012/C 115/01, Guidelines accompanying Commission Delegated Regulation (EU) No 244/2012 of 16 January 2012 supplementing Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings by establishing a comparative methodology f. Off. J. Eur. Union 2012, 28. Available online: https://www.buildup.eu/en/practices/publications/guidelines-accompanying-commission-delegated-regulation-eu-no-2442012-16 (accessed on 26 June 2020).
- Simson, R.; Arumägi, E.; Kuusk, K.; Kurnitski, J. Redefining cost-optimal nZEB levels for new residential buildings. In Proceedings of the E3S Web of Conferences; 2019; Volume 111. Available online: https://www.e3s-conferences.org/articles/e3sconf/abs/2019/37/e3sconf_clima2019_03035/e3sconf_clima2019_03035.html (accessed on 26 June 2020). [CrossRef] [Green Version]
- Arumägi, E.; Simson, R.; Kuusk, K.; Kalamees, T. Analysis of Cost-Optimal Minimum Energy Efficiency Requirements for Buildings; Tallinn University of Technology. 2017. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/ee_2018_cost-optimal_en_version.pdf. (accessed on 26 June 2020).
- Procurement Register. Muuga Lasteaia Projekteerimistööd (Design of Muuga Kindergarten). 2016. Available online: https://www.mercell.com/en/tender/59217976/hanke-aruanne-muuga-lasteaia-projekteerimistood-br-hanke-voitja-sweco-projekt-as-11304200-br89000-eur-tender.aspx (accessed on 26 June 2020).
- Procurement Register. Muuga Lasteaia Projekteerimis- ja Ehitustööd (Design and Construction Works of Muuga Kindergarten). 2017. Available online: https://tenders.rfpalertservices.com/et/2017-8/1/rfp-tender/muuga-lasteaia-projekteerimis-ja-ehitust%C3%B6%C3%B6d-15524475 (accessed on 26 June 2020).
- Kantola, M.; Saari, A. Ensuring functionality of a nearly zero-energy building with procurement methods. Facilities 2014, 32, 312–323. [Google Scholar] [CrossRef]
- 15 RT I, 05.06.2015, Energiatõhususe Miinimumnõuded (Minimum Requirements for Buildings Energy Performance). 2015. Available online: https://ec.europa.eu/growth/tools-databases/tris/mt/index.cfm/search/?trisaction=search.detail&year=2015&num=88&fLang=ET&dNum=1 (accessed on 26 June 2020).
- Pikas, E.; Kurnitski, J.; Thalfeldt, M.; Koskela, L. Cost-benefit analysis of nZEB energy efficiency strategies with on-site photovoltaic generation. Energy 2017, 128, 291–301. [Google Scholar] [CrossRef]
- D’Agostino, D.; Parker, D. A framework for the cost-optimal design of nearly zero energy buildings (NZEBs) in representative climates across Europe. Energy 2018, 149, 814–829. [Google Scholar] [CrossRef]
- Pikas, E.; Thalfeldt, M.; Kurnitski, J. Cost optimal and nearly zero energy building solutions for office buildings. Energy Build. 2014, 74, 30–42. [Google Scholar] [CrossRef]
- Congedo, P.; D’Agostino, D.; Baglivo, C.; Tornese, G.; Zacà, I. Efficient Solutions and Cost-Optimal Analysis for Existing School Buildings. Energies 2016, 9, 851. [Google Scholar] [CrossRef] [Green Version]
- Tumminia, G.; Guarino, F.; Longo, S.; Aloisio, D.; Cellura, S.; Sergi, F.; Brunaccini, G.; Antonucci, V.; Ferraro, M. Grid interaction and environmental impact of a net zero energy building. Energy Convers. Manag. 2020, 203, 112228. [Google Scholar] [CrossRef]
- Butera, F.M. Zero-energy buildings: The challenges. Adv. Build. Energy Res. 2013, 7, 51–65. [Google Scholar] [CrossRef]
Building Data | |
---|---|
Building Type | Day-Care Centre |
Net floor area. Heated area. (m2) | 1112 |
Properties of The Envelope | |
Thermal transmittance U, W/(m2·K) | |
External wall (EW) | 0.18 |
Roof (R) | 0.08 |
Floor (F) | 0.19 |
Windows (W) | 0.09 |
Air leakage rate q50, m³/(h·m2) | 3.0 |
Thermal bridges Ψi, W/(m·K) | |
External wall/external wall | 0.06 |
External windows perimeter | 0.04 |
Roof/external wall | 0.08 |
External slab/external wall | 0.24 |
Basic System Information (Initial Estimation) | |
Ventilation system | Mechanical supply and exhaust with heat recovery |
Heating system | Hydronic floor heating |
Heating source | Ground-source heat pump (GSHP) or district heating (DH) |
Onsite production/Renewable sources | Photovoltaic (PV) panels |
Building Type | Occupied Hours | h/24 h | d/7 d | Usage Rate | Lighting W/m2 | Appliances W/m2 | Occupants * W/m2 |
---|---|---|---|---|---|---|---|
Day-care center | 07:00–19:00 | 12 | 5 | 0.4 | 15 | 4 | 20 |
Parameter | Value (VAT 0%) |
---|---|
Thermal energy price (DH), EUR/kWh | 0.050 |
Electricity price from the grid, EUR/kWh | 0.1119 |
Electricity price when sold to the grid, EUR/kWh | 0.035 |
Value | |
Real interest rate, % | 4.0 |
Escalation (electricity), % | 2.0 |
Escalation (thermal energy), % | 2.0 |
Calculation period for residential buildings, years | 20 |
Title | Annual Energy Use, kWh/(m2·a) | |
---|---|---|
Delivered Energy | Primary Energy | |
Room heating | 9.3 | 18.6 |
Ventilation air heating | 16.8 | 33.6 |
Hot water | 10.0 | 20.0 |
Appliances | 5.0 | 10.0 |
Lighting | 12.5 | 25.0 |
Fans and pumps | 16.3 | 32.6 |
Total | 70 | 140 |
Heat Source | Efficiency of Heat Source | Conversion Factors | EPI, kWh/(m2·a) | EPI ¹, kWh/(m2·a) |
---|---|---|---|---|
District heating | 0.9 | 0.9 | 159 | 148 |
Efficient district heating | 0.9 | 0.65 | 139 | 126 |
Ground-source heat pump | 3.6 (heating)/2.7 (DHW) | 2 | 143 | 129 |
Gas boiler | 0.95 | 1 | 164 | 153 |
Wood pellet boiler | 0.85 | 0.65 | 141 | 129 |
Insulation Measure | Thermal Transmittance U, W/(m2·K) | Total Investment Cost, €·103 | Marginal Investment Cost, €·103 | Space Heating Demand kWh/(m2·year) | Final Heat Savings MWh/year |
---|---|---|---|---|---|
External wall (EW) | 0.18 ¹ | 1582 | - | 62.2 | - |
0.15 | 1586 | 3.6 | 60.4 | 2.1 | |
0.12 | 1599 | 13.1 | 58.5 | 4.2 | |
0.09 | 1618 | 19.5 | 56.3 | 6.7 | |
0.08 | 1627 | 9.0 | 55.6 | 7.5 | |
Roof (R) | 0.08 ¹ | - | - | 62.2 | - |
0.07 | 1595 | 13.1 | 58.7 | 4.0 | |
0.064 | 1640 | 45.1 | 57.8 | 5.0 | |
Window (W) | 0.09 ¹ | - | - | 62.2 | - |
0.84 | 1594 | 12.1 | 58.4 | 4.4 | |
0.62 | 1600 | 5.7 | 53.1 | 10.4 | |
0.54 | 1619 | 18.8 | 51.2 | 12.6 | |
Floor (F) | 0.19 ¹ | - | - | 62.2 | - |
0.15 | 1603 | 20.8 | 59.6 | 3.0 | |
0.10 | 1622 | 19.0 | 56.1 | 7.0 | |
0.08 | 1641 | 19.0 | 54.1 | 9.3 | |
Air leakage rate (q50, m³/(h·m2)) | 3.0 ¹ | - | - | 62.2 | - |
1.0 | 1585 | 3.0 | 59.8 | 2.7 | |
0.6 | 1588 | 6.0 | 59.4 | 3.2 |
BC | Cost-Optimal without PV | Cost-Optimal with PV | The Least PV to Reach ΔNPV = 0 | ||
---|---|---|---|---|---|
Thermal transmittance W/(m2·K) and air leakage rate m³/(m2·h) | UEW 0.183 | UEW 0.171 | UEW 0.171 | UEW 0.153 | UEW 0.123 |
UR 0.093 | UR 0.093 | UR 0.093 | UR 0.07 | UR 0.07 | |
UF 0.148 | UF 0.148 | UF 0.112 | UF 0.10 | UF 0.10 | |
UW 1.0 | UW 1.0 | UW 1.0 | UW 0.7 | UW 0.7 | |
q50 1.5 | q50 1.5 | q50 1.0 | q50 0.6 | q50 1.0 | |
Specific fan power of AHU, kW/(m³/s) | 1.75 | 1.5 | 1.5 | 1.5 | 1.5 |
Lighting power, W/m2 | 12 | 6 | 6 | 6 | 6 |
Power of PV, Wp/net m2 | 0 | 0 | 32.8 | 10.5 | 17.4 |
EPI, kWh/(m2·a) | 126 | 115 | 113 | 100 | 100 |
ΔNPV, €/m2 | 0 | −8.8 | −22.8 | 0 | 0 |
Total cost, €/m2 | 1384 | 1386 | 1423 | 1455 | 1464 |
Version | Thermal Transmittance W/(m2·K) | q50 | AHU’s SFP | EPI | Total Cost | |||
---|---|---|---|---|---|---|---|---|
Ex. Wall | Roof | Floor | Window | m³/(h·m2) | kW/m³/s | kWh/(m2·a) | €/m2 | |
Ver -1 | 0.28 | 0.21 | 0.22 | 1.4 | 3 | 1.8 | 139.5 | 1298 |
Ver 1 | 0.18 | 0.09 | 0.19 | 1.06 | 3 | 1.8 | 125.7 | 1384 |
Ver 2 | 0.15 | 0.09 | 0.15 | 1.06 | 3 | 1.8 | 118.4 | 1405 |
Ver 3 | 0.12 | 0.07 | 0.10 | 0.84 | 3 | 1.8 | 109.2 | 1456 |
Ver 4 | 0.09 | 0.07 | 0.08 | 0.62 | 1 | 1.75 | 101.1 | 1498 |
Ver 5 | 0.08 | 0.06 | 0.08 | 0.54 | 1 | 1.5 | 93.6 | 1564 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arumägi, E.; Kalamees, T. Cost and Energy Reduction of a New nZEB Wooden Building. Energies 2020, 13, 3570. https://doi.org/10.3390/en13143570
Arumägi E, Kalamees T. Cost and Energy Reduction of a New nZEB Wooden Building. Energies. 2020; 13(14):3570. https://doi.org/10.3390/en13143570
Chicago/Turabian StyleArumägi, Endrik, and Targo Kalamees. 2020. "Cost and Energy Reduction of a New nZEB Wooden Building" Energies 13, no. 14: 3570. https://doi.org/10.3390/en13143570
APA StyleArumägi, E., & Kalamees, T. (2020). Cost and Energy Reduction of a New nZEB Wooden Building. Energies, 13(14), 3570. https://doi.org/10.3390/en13143570