Damage Monitoring of a Catenary Moored Spar Platform for Renewable Energy Devices
Abstract
:1. Introduction
2. Experimental Details
2.1. Deep Ocean Wave Basin
2.2. Floating Spar Buoy Platform Model
2.3. Mooring System Design
2.4. Structural Configurations Representing Damage Effects
2.5. Wave Conditions
2.6. Data Acquisition
3. Response Characterisation of the Test Platform
3.1. Estimation of Natural Frequency from Free Decay Tests
3.2. Estimation of Damping Ratio from Free Decay Tests
4. Results
4.1. Quantiles of Acceleration Values
4.2. Probability Distribution Fits for Acceleration Responses
4.3. Distribution of Extreme Values
5. Discussion and Conclusions
- Free decay tests and estimates of natural frequency and damping ratios from such tests are not particularly useful to detect the presence of differentiation between the levels of types of damage.
- Mean and p95 percentiles show changes when there is a significant variation in the structure, but they do not show a distinct pattern to distinguish types and extents of damage.
- Best fit distributions on measured histograms of acceleration responses of the structure indicate significant changes in various damage phases, and the distribution parameters, once calibrated against the type of damage condition, can be helpful in determining the damage or an effect of a change that is equivalent to the calibrated damage condition.
- Extreme value distribution fits to the tails of the measured histograms indicate that changes in distribution parameters can be calibrated against the damage conditions. A calibrated combination of the parameters of the distribution fits for the overall and the extremes from the measured histograms can thus be relevant for characterizing damages.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Topham, E.; McMillan, D. Sustainable decommissioning of an offshore wind farm. Renew. Energy 2017, 102, 470–480. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Luengo, M.; Kolios, A.; Wang, L. Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm. Renew. Sustain. Energy Rev. 2016, 64, 91–105. [Google Scholar] [CrossRef] [Green Version]
- National Research Council (US). Transportation Research Board Structural Integrity of Offshore Wind Turbines. In Structural Integrity of Offshore Wind Turbines; The National Academies Press: Washington, DC, USA, 2011; Volume 305. [Google Scholar] [CrossRef]
- Etemaddar, M.; Blanke, M.; Gao, Z.; Moan, T. Response analysis and comparison of a spar-type floating offshore wind turbine and an onshore wind turbine under blade pitch controller faults. Wind. Energy 2014, 19, 35–50. [Google Scholar] [CrossRef] [Green Version]
- Seo, B.; Shin, H.; Kim, J.; Shim, W.; Ahn, H.; Yu, Y.; Dam, P.T.; Kumar, R. A Study on Structural Responses of Offshore Wind Turbines by Slamming Loads. In Proceedings of the ASME 2018 1st International Offshore Wind Technical Conference, San Francisco, CA, USA, 4–7 November 2018. [Google Scholar]
- Sun, C. Mitigation of offshore wind turbine responses under wind and wave loading: Considering soil effects and damage. Struct. Control Health Monit. 2017, 25, e2117. [Google Scholar] [CrossRef]
- Wang, C.; Utsunomiya, T.; Wee, S.C.; Choo, Y.S. Research on floating wind turbines: A literature survey. IES J. Part A Civ. Struct. Eng. 2010, 3, 267–277. [Google Scholar] [CrossRef] [Green Version]
- Watson, S.J.; Moro, A.; Reis, V.; Baniotopoulos, C.; Barth, S.; Bartoli, G.; Bauer, F.; Boelman, E.; Bosse, D.; Cherubini, A.; et al. Future emerging technologies in the wind power sector: A European perspective. Renew. Sustain. Energy Rev. 2019, 113, 109270. [Google Scholar] [CrossRef]
- DNVGL-OS-C105. Structural Design of TLPs—LRFD Method. 2015. Available online: https://rules.dnvgl.com/docs/pdf/dnvgl/os/2015-07/DNVGL-OS-C105.pdf (accessed on 13 July 2020).
- Ochi, M.K. Ocean Waves: The Stochastic Approach (Volume 6); Cambridge University Press (Cambridge Ocean Technology Series): Cambridge, UK, 2005. [Google Scholar] [CrossRef]
- O’Kelly-Lynch, P.; Long, C.; McAuliffe, F.D.; Murphy, J.; Pakrashi, V. Structural design implications of combining a point absorber with a wind turbine monopile for the east and west coast of Ireland. Renew. Sustain. Energy Rev. 2020, 119, 109583. [Google Scholar] [CrossRef]
- Bachynski, E.E.; Moan, T. Design considerations for tension leg platform wind turbines. Mar. Struct. 2012, 29, 89–114. [Google Scholar] [CrossRef]
- Barranco-Cicilia, F.; Lima, E.; Sagrilo, L. Reliability-based design criterion for TLP tendons. Appl. Ocean Res. 2008, 30, 54–61. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, M.; Shao, Y.; Gao, Z.; Moan, T. Effect of wave nonlinearity on fatigue damage and extreme responses of a semi-submersible floating wind turbine. Appl. Ocean Res. 2019, 91, 101879. [Google Scholar] [CrossRef]
- Ma, Z.; Li, W.; Ren, N.; Ou, J. The typhoon effect on the aerodynamic performance of a floating offshore wind turbine. J. Ocean Eng. Sci. 2017, 2, 279–287. [Google Scholar] [CrossRef]
- Ciang, C.C.; Lee, J.-R.; Bang, H.-J. Structural health monitoring for a wind turbine system: A review of damage detection methods. Meas. Sci. Technol. 2008, 19, 122001. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Li, J.; Zhuge, P. Failure Analysis of Large-Scale Wind Power Structure under Simulated Typhoon. Math. Probl. Eng. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Soman, R. Semi-automated methodology for damage assessment of a scaled wind turbine tripod using enhanced empirical mode decomposition and statistical analysis. Int. J. Fatigue 2020, 134, 105475. [Google Scholar] [CrossRef]
- Siddiqui, M.; Greco, M.; Lugni, C.; Faltinsen, O. Experimental studies of a damaged ship section in beam sea waves. Appl. Ocean Res. 2020, 97, 102090. [Google Scholar] [CrossRef]
- Draycott, S.; Steynor, J.; Nambiar, A.; Sellar, B.; Venugopal, V. Experimental assessment of tidal turbine loading from irregular waves over a tidal cycle. J. Ocean Eng. Mar. Energy 2019, 5, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Jaksic, V.; Wright, C.S.; Murphy, J.; Afeef, C.; Ali, S.F.; Mandic, D.P.; Pakrashi, V. Dynamic response mitigation of floating wind turbine platforms using tuned liquid column dampers. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140079. [Google Scholar] [CrossRef]
- Jaksic, V.; O’Shea, R.; Cahill, P.; Murphy, J.; Mandic, D.P.; Pakrashi, V. Dynamic response signatures of a scaled model platform for floating wind turbines in an ocean wave basin. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140078. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, D.; Srbinovsky, B.; Murphy, J.; Popovici, E.; Pakrashi, V. Sensor Measurement Strategies for Monitoring Offshore Wind and Wave Energy Devices. In Proceedings of the 11th International Conference on Damage Assessment of Structures (DAMAS 2015), Ghent, Belgium, 24–26 August 2015; Volume 628, p. 012117. [Google Scholar] [CrossRef] [Green Version]
- Damiani, R.R. Uncertainty and Risk Assessment in the Design Process for Wind; National Renewable Energy Lab (NREL): Golden, CO, USA, 2018. [Google Scholar]
- Leimeister, M.; Kolios, A. A review of reliability-based methods for risk analysis and their application in the offshore wind industry. Renew. Sustain. Energy Rev. 2018, 91, 1065–1076. [Google Scholar] [CrossRef]
- Yeter, B.; Tekgoz, M.; Garbatov, Y.; Soares, C.G. Fragility analysis of an ageing monopile offshore wind turbine subjected to simultaneous wind and seismic load. Saf. Extreme Environ. 2020, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Quilligan, A.; O’Connor, A.; Pakrashi, V. Fragility analysis of steel and concrete wind turbine towers. Eng. Struct. 2012, 36, 270–282. [Google Scholar] [CrossRef]
- Pakrashi, V.; Fitzgerald, P.; Oleary, M.; Jaksic, V.; Ryan, K.; Basu, B. Assessment of structural nonlinearities employing extremes of dynamic responses. J. Vib. Control 2016, 24, 137–152. [Google Scholar] [CrossRef]
- Pakrashi, V.; O’Shea, R.; Jaksic, V.; Murphy, J. The Hurst Exponent as an Indicator of the Behaviour of a Model Monopile in an Ocean Wave Testing Basin. In Proceedings of the 11th International Conference on Damage Assessment of Structures (DAMAS 2015), Ghent, Belgium, 24–26 August 2015; Volume 628, p. 012057. [Google Scholar] [CrossRef]
- Jaksic, V.; Mandic, D.P.; Ryan, K.; Basu, B.; Pakrashi, V. A comprehensive study of the delay vector variance method for quantification of nonlinearity in dynamical systems. R. Soc. Open Sci. 2016, 3, 150493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Leary, K.; Pakrashi, V.; Kelliher, D. Optimization of composite material tower for offshore wind turbine structures. Renew. Energy 2019, 140, 928–942. [Google Scholar] [CrossRef]
- Wright, C.; Pakrashi, V.; Murphy, J. Dynamic Effects of Anchor Positional Tolerance on Tension Moored Floating Wind Turbine. J. Phys. Conf. Ser. 2016, 753, 92019. [Google Scholar] [CrossRef] [Green Version]
- Wright, C.; O’Sullivan, K.; Murphy, J.; Pakrashi, V. Experimental Comparison of Dynamic Responses of a Tension Moored Floating Wind Turbine Platform with and without Spring Dampers. In Proceedings of the 11th International Conference on Damage Assessment of Structures (DAMAS 2015), Ghent, Belgium, 24–26 August 2015; Volume 628, p. 012056. [Google Scholar] [CrossRef] [Green Version]
- Chortis, G.; Askarinejad, A.; Prendergast, L.J.; Li, Q.; Gavin, K. Influence of scour depth and type on p–y curves for monopiles in sand under monotonic lateral loading in a geotechnical centrifuge. Ocean Eng. 2020, 197, 106838. [Google Scholar] [CrossRef]
- Prendergast, L.J.; Reale, C.; Gavin, K. Probabilistic examination of the change in eigenfrequencies of an offshore wind turbine under progressive scour incorporating soil spatial variability. Mar. Struct. 2018, 57, 87–104. [Google Scholar] [CrossRef] [Green Version]
- Jamalkia, A.; Ettefagh, M.M.; Mojtahedi, A. Damage detection of TLP and Spar floating wind turbine using dynamic response of the structure. Ocean Eng. 2016, 125, 191–202. [Google Scholar] [CrossRef]
- Chen, J.; Hu, Z.; Duan, F. Comparisons of dynamical characteristics of a 5 MW floating wind turbine supported by a spar-buoy and a semi-submersible using model testing methods. J. Renew. Sustain. Energy 2018, 10, 053311. [Google Scholar] [CrossRef] [Green Version]
- Cruz, J.; Atcheson, M. (Eds.) Floating Offshore Wind Energy: The Next Generation of Wind Energy; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Roddier, D.; Cermelli, C.; Aubault, A.; Weinstein, A. Wind Float: A floating foundation for offshore wind turbines. J. Renew. Sustain. Energy 2010, 2, 033104. [Google Scholar] [CrossRef]
- Moan, T. Integrity Management of Offshore Structures With Emphasis on Design for Structural Damage Tolerance. J. Offshore Mech. Arct. Eng. 2020, 142, 1–65. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Moan, T. Stochastic and deterministic combinations of still water and wave bending moments in ships. Mar. Struct. 1996, 9, 787–810. [Google Scholar] [CrossRef]
- Chiang, A.C.; Keoleian, G.A.; Moore, M.R.; Kelly, J.C. Investment cost and view damage cost of siting an offshore wind farm: A spatial analysis of Lake Michigan. Renew. Energy 2016, 96, 966–976. [Google Scholar] [CrossRef] [Green Version]
- Shanley, M. Innovative Hull Design for Servicing Offshore Wind Turbines. Ph.D. Thesis, University College Cork, Cork, Ireland, 2018. [Google Scholar]
- Desmond, C.; Buret, B.; Shanley, M.; Murphy, J.; Pakrashi, V. The Assessment of Water Surface Elevation Uncertainty in a Hydraulics Laboratory. In Proceedings of the 13th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP13), Seoul, Korea, 26–30 May 2019. [Google Scholar]
- Chakrabarti, S. Physical model testing of floating offshore structures. In Proceedings of the Dynamic Positioning Conference, Houston, TX, USA, 13–14 October 1998; Volume 1, pp. 1–33. [Google Scholar]
- Larsen, T.; Hanson, T.D. A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine. In Proceedings of the Science of Making Torque from Wind, Copenhagen, Denmark, 28–31 August 2007; Volume 75, p. 12073. [Google Scholar] [CrossRef]
- Sethuraman, L.; Xing, Y.; Gao, Z.; Venugopal, V.; Mueller, M.; Moan, T. A 5MW direct-drive generator for floating spar-buoy wind turbine: Development and analysis of a fully coupled Mechanical model. Proc. Inst. Mech. Eng. Part A J. Power Energy 2014, 228, 718–741. [Google Scholar] [CrossRef] [Green Version]
- Tucker, M.J.; Pitt, E.G. Waves in Ocean Engineering (No. Volume 5); Elsevier Science & Technology: Oxford, UK, 2001. [Google Scholar]
- Cahill, B. Characteristics of the Wave Energy Resource at the Atlantic Marine Energy Test Site. Ph.D. Thesis, University College Cork, Cork, Ireland, 2013. [Google Scholar]
- Yang, H.; Xu, P. Effect of hull geometry on parametric resonances of spar in irregular waves. Ocean Eng. 2015, 99, 14–22. [Google Scholar] [CrossRef]
- Gavassoni, E.; Gonçalves, P.B.; Roehl, D.M. Nonlinear vibration modes and instability of a conceptual model of a spar platform. Nonlinear Dyn. 2013, 76, 809–826. [Google Scholar] [CrossRef]
- Jingrui, Z.; Yougang, T.; Wenjun, S. A Study on the Combination Resonance Response of a Classic Spar Platform. J. Vib. Control 2010, 16, 2083–2107. [Google Scholar] [CrossRef]
- Ay, A.M.; Khoo, S.; Wang, Y. Probability distribution of decay rate: A statistical time-domain damping parameter for structural damage identification. Struct. Health Monit. 2018, 18, 66–86. [Google Scholar] [CrossRef]
- Carden, E.P.; Fanning, P. Vibration Based Condition Monitoring: A Review. Struct. Health Monit. 2004, 3, 355–377. [Google Scholar] [CrossRef]
- Carden, E.P.; Brownjohn, J.M. ARMA modelled time-series classification for structural health monitoring of civil infrastructure. Mech. Syst. Signal Process. 2008, 22, 295–314. [Google Scholar] [CrossRef] [Green Version]
- Kullaa, J. Damage detection of the z24 bridge using control charts. Mech. Syst. Signal Process. 2003, 17, 163–170. [Google Scholar] [CrossRef]
- Bali, S.; Hazra, B.; Pakrashi, V. Quantile autoregressive modeling for non-linear change detection in vibrating structural systems. Mech. Res. Commun. 2019, 100, 103397. [Google Scholar] [CrossRef]
- Joseph, G.V.; Hao, G.; Pakrashi, V. Fragility analysis using vibration energy harvesters. Eur. Phys. J. Spec. Top. 2019, 228, 1625–1633. [Google Scholar] [CrossRef]
- Joseph, G.V.; Hao, G.; Pakrashi, V. Extreme value estimates using vibration energy harvesting. J. Sound Vib. 2018, 437, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Rocher, B.; Schoefs, F.; François, M.; Salou, A.; Caouissin, A.-L. A two-scale probabilistic time-dependent fatigue model for offshore steel wind turbines. Int. J. Fatigue 2020, 136, 105620. [Google Scholar] [CrossRef]
- Radhika, B.; Manohar, C. Reliability models for existing structures based on dynamic state estimation and data based asymptotic extreme value analysis. Probabilistic Eng. Mech. 2010, 25, 393–405. [Google Scholar] [CrossRef]
- Begovic, E.; Bertorello, C.; Pennino, S.; Piscopo, V.; Scamardella, A. Statistical analysis of planing hull motions and accelerations in irregular head sea. Ocean Eng. 2016, 112, 253–264. [Google Scholar] [CrossRef]
- Dong, W.; Moan, T.; Gao, Z. Fatigue reliability analysis of the jacket support structure for offshore wind turbine considering the effect of corrosion and inspection. Reliab. Eng. Syst. Saf. 2012, 106, 11–27. [Google Scholar] [CrossRef]
- Soares, C.G.; Carvalho, A. Probability distributions of wave heights and periods in combined sea-states measured off the Spanish coast. Ocean Eng. 2012, 52, 13–21. [Google Scholar] [CrossRef]
Location | Line Length (m) | Measured Line Mass (g) | Mass per Metre (g/m) |
---|---|---|---|
Port | 4.4 | 250 | 56.8 |
Starboard | 4.4 | 251 | 57.0 |
Stern/Catenary Line | 14.6 | 880 | 60.3 |
Average | 58.03 |
Phase | Description |
---|---|
A | Original configuration |
B | Asymmetrically over-weighted +2.5 kg |
C | Asymmetrically over-weighted +3.75 kg |
D | Symmetrically over-weighted +5 kg |
E | Severed back mooring line |
F | Severed front mooring line |
Wave Case | Full Scale | Model Scale | ||||
---|---|---|---|---|---|---|
Tp (s) | fp (Hz) | Hs (m) | Tp (s) | ωp (Hz) | Hs (m) | |
Sine 1 | 4 | 0.25 | 0.5 | 0.667 | 1.50 | 0.014 |
Sine 2 | 5 | 0.2 | 1 | 0.833 | 1.20 | 0.028 |
Sine 3 | 6 | 0.167 | 1 | 1.000 | 1.00 | 0.028 |
Sine 4 | 7 | 0.143 | 1.5 | 1.167 | 0.86 | 0.0415 |
Sine 5 | 8 | 0.125 | 2 | 1.333 | 0.75 | 0.0555 |
Sine 6 | 10 | 0.1 | 2 | 1.667 | 0.60 | 0.0555 |
Tp (s) | fp (Hz) | Hm0(m) | Tp (s) | ωp (Hz) | Hm0(m) | |
Bret 1 | 6 | 0.167 | 1 | 1.000 | 1.00 | 0.028 |
Bret 2 | 7 | 0.143 | 3 | 1.167 | 0.86 | 0.083 |
Bret 3 | 8.5 | 0.118 | 0.5 | 1.417 | 0.71 | 0.014 |
Bret 4 | 8.5 | 0.118 | 4 | 1.417 | 0.71 | 0.111 |
Bret 5 | 10 | 0.1 | 5 | 1.667 | 0.60 | 0.139 |
Bret 6 | 10 | 0.1 | 1 | 1.667 | 0.60 | 0.028 |
Bret 7 | 12.5 | 0.08 | 6 | 2.083 | 0.48 | 0.167 |
Bret 8 | 12.5 | 0.08 | 2 | 2.083 | 0.48 | 0.056 |
Bret 9 | 14.0 | 0.071 | 4 | 2.333 | 0.43 | 0.111 |
Bret 10 | 15.5 | 0.065 | 6 | 2.583 | 0.39 | 0.167 |
Phase | Peak Frequencies from FFT (Hz) | |||||||
---|---|---|---|---|---|---|---|---|
Tank Scale | Full Scale | |||||||
Heave | Sway | Surge | Pitch | Heave | Sway | Surge | Pitch | |
A | 0.444 | 0.026 | 0.029 | 0.397 | 0.0740 | 0.0043 | 0.0048 | 0.0662 |
B | 0.434 | 0.016 | 0.021 | 0.368 | 0.0723 | 0.0027 | 0.0035 | 0.0613 |
C | 0.424 | 0.023 | 0.021 | 0.0596 | 0.0707 | 0.0038 | 0.0035 | 0.0099 |
D | 0.423 | 0.021 | 0.021 | 0.316 | 0.0705 | 0.0035 | 0.0035 | 0.0527 |
E | 0.443 | 0.021 | 0.012 | 0.391 | 0.0738 | 0.0035 | 0.0020 | 0.0652 |
F | 0.442 | 0.018 | 0.01 | 0.368 | 0.0737 | 0.0030 | 0.0017 | 0.0613 |
Heave Response | Phase A | Phase B | Phase C | Phase D | Phase E |
---|---|---|---|---|---|
Average estimated ζ (%) | 1.45% | 1.50% | 1.38% | 1.60% | 1.29% |
Phase A | BIC Differences (%) | ||
---|---|---|---|
Gamma | GEV | Weibull | |
Bret 1 | 17.696 | 0 | 32.668 |
Bret 2 | 0 | 3.854 | 6.692 |
Bret 3 | 19.946 | 0 | 26.925 |
Bret 4 | 0 | 2.950 | 2.756 |
Bret 5 | 0 | 0.250 | 5.234 |
Bret 6 | 22.854 | 0 | 46.053 |
Bret 7 | 0 | 1.135 | 2.056 |
Bret 8 | 0 | 3.828 | 4.537 |
Bret 9 | 0 | 1.229 | 2.124 |
Bret 10 | 0 | 1.125 | 0.699 |
Average | 6.050 | 1.437 | 12.974 |
Bret 7 | Shape k | Scale σ | Location µ |
---|---|---|---|
Phase A | 0.072 | 0.563 | 1.054 |
Phase B | 0.051 | 0.414 | 0.792 |
−29% | −26% | −25% | |
Phase C | 0.042 | 0.361 | 0.787 |
−42% | −36% | −25% | |
Phase D | −0.017 | 0.341 | 0.689 |
−124% | −39% | −35% | |
Phase E | 0.022 | 0.554 | 1.091 |
−69% | −2% | +4% | |
Phase F | 0.146 | 0.548 | 1.010 |
+103% | −3% | −4% |
Bret 7 | Shape K | Scale Σ | Location µ |
---|---|---|---|
Phase A | 0.072 | 0.563 | 1.054 |
Phase B | 0.051 | 0.414 | 0.792 |
−28.6% | −26.4% | −24.9% | |
Phase C | 0.042 | 0.361 | 0.787 |
−28.6% | −26.4% | −24.9% | |
Phase D | −0.017 | 0.341 | 0.689 |
−123.9% | −39.4% | −34.6% | |
Phase E | 0.022 | 0.554 | 1.091 |
−69.3% | −1.6% | +3.6% | |
Phase F | 0.146 | 0.548 | 1.010 |
+103.3% | −2.6% | −4.2% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Donnell, D.; Murphy, J.; Pakrashi, V. Damage Monitoring of a Catenary Moored Spar Platform for Renewable Energy Devices. Energies 2020, 13, 3631. https://doi.org/10.3390/en13143631
O’Donnell D, Murphy J, Pakrashi V. Damage Monitoring of a Catenary Moored Spar Platform for Renewable Energy Devices. Energies. 2020; 13(14):3631. https://doi.org/10.3390/en13143631
Chicago/Turabian StyleO’Donnell, Deirdre, Jimmy Murphy, and Vikram Pakrashi. 2020. "Damage Monitoring of a Catenary Moored Spar Platform for Renewable Energy Devices" Energies 13, no. 14: 3631. https://doi.org/10.3390/en13143631
APA StyleO’Donnell, D., Murphy, J., & Pakrashi, V. (2020). Damage Monitoring of a Catenary Moored Spar Platform for Renewable Energy Devices. Energies, 13(14), 3631. https://doi.org/10.3390/en13143631