Analysis of the Effects of Electrification of the Road Transport Sector on the Possible Penetration of Nuclear Fusion in the Long-Term European Energy Mix
Abstract
:1. Introduction
2. The European Road Transport Reference Energy System
- Base year transport technologies, used to model the demand and the energy use at the beginning of the time horizon (year 2005), and displayed in Table 3. The base year demand is calculated by combining the total road transport energy consumption from IEA/Eurostat statistics [19] with dummy efficiency values and coefficients. In this way, the energy consumption is allocated to the different vehicle categories, which are then used as calibration parameters to meet total consumption in the base year, according to Equation (1):
- New transport technologies, used to model the energy use throughout the model time horizon, are added to the existing fleet of the base year technologies from the second time step onwards. In Section 3.2, the algorithm for the evaluation of the demand evolution will be illustrated; it has to be matched at any time step by the energy supply. The new technologies are characterized by five parameters:
- Efficiency;
- Lifetime;
- Investment cost;
- Fixed operation and maintenance (O&M) cost;
- Variable O&M cost.
2.1. Efficiency
2.2. Lifetime
2.3. Investment Cost
2.4. Fixed O&M Cost
2.5. Variable O&M Cost
3. The EUROfusion TIMES Model
3.1. The Storylines
3.2. Demand Projection
3.3. Scenario Definition
- Carbon capture and storage (CCS) technology availability from 2030 in the EUR region;
- Reference investment and O&M costs for fusion technologies, derived from the fusion reactor cost estimation performed by means of the PROCESS code [6] (which aims to minimize the cost of electricity, accounting for constraints on engineering, physics and materials of the NFPP [30]); see Table 10. The NFPP availability for commercial purposes is assumed to start from 2070 in the EUR region; a 85% availability factor and a lifetime of 40 years is assumed;
- Optimistic prediction about nuclear fission potential evolution, in order to consider the possibility to increase, up to five times, the current global capacity, slightly reducing the investment costs by ;
- External costs of fusion and other electricity production sources are not included.
4. Results
4.1. Energy Demand for the Road Transport Sector
4.2. Road Vehicle Fleet Composition
4.3. Electricity Production Mix
- Nuclear, including fission and fusion power plants;
- VRES, including solar PV and wind power plants;
- Other RES, including biomass, hydroelectric, geothermal and concentrated solar power (CSP) plants;
- Fossil fuels, including coal, oil and gas plants;
- Fossil fuels w/CCS, including coal, oil and gas plants provided with CCS technologies.
4.4. CO2 Emissions
5. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AFV | Alternative fuel vehicle |
B2D | Below 2 Degrees |
BEV | Battery-electric vehicles |
CCS | Carbon capture and storage |
CFV | Conventional fuel vehicle |
DAT | Deutsche Automobil Treuhand |
EGVI | European Green Vehicle Initiative |
ETM | EUROfusion TIMES Model |
EU-DEMO | European Demonstration Fusion Power Reactor |
FCEV | Fuel cell electric vehicle |
GDP | Gross domestic product |
GHG | Greenhouse gases |
GVW | Gross vehicle weight |
HDV | Heavy-duty vehicle |
ICE | Internal combustion engine |
IEA | International Energy Agency |
IPCC | Intergovernmental Panel on Climate Change |
LDV | Light-duty vehicle |
LPG | Liquefied petroleum gas |
NEDC | New European Driving Cycle |
NFPP | Nuclear fusion power plant |
O&M | Operation and maintenance |
PET36 | Pan European TIMES 36 |
PHEV | Plug-in hybrid electric vehicle |
POP | Population |
RCP | Representative Concentration Pathway |
RES | Renewable energy sources |
TIMES | The Integrated MARKAL-EFOM System |
VRES | Variable renewable energy source |
WPSES | Work Package for Socio-Economic Studies |
References
- Donné, T.; Morris, W. European Research Roadmap to the Realisation of Fusion Energy; EUROfusion: Garching bei München, Germany, 2018. [Google Scholar]
- Kim, K.; Im, K.; Kim, H.C.; Oh, S.; Park, J.; Kwon, S.; Lee, Y.S.; Yeom, J.H.; Lee, C.; Lee, G.S.; et al. Design concept of K-DEMO for near-term implementation. Nucl. Fusion 2015, 55, 053027. [Google Scholar] [CrossRef]
- Zhuang, G.; Li, G.Q.; Li, J.; Wan, Y.X.; Liu, Y.; Wang, X.L.; Song, Y.T.; Chan, V.; Yang, Q.W.; Wan, B.N.; et al. Progress of the CFETR design. Nucl. Fusion 2019, 59, 112010. [Google Scholar] [CrossRef]
- Sorbom, B.N.; Ball, J.; Palmer, T.R.; Mangiarotti, F.J.; Sierchio, J.M.; Bonoli, P.; Kasten, C.; Sutherland, D.A.; Barnard, H.S.; Haakonsen, C.B.; et al. ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets. Fusion Eng. Des. 2015, 100, 378–405. [Google Scholar] [CrossRef] [Green Version]
- Segantin, S.; Testoni, R.; Zucchetti, M. The lifetime determination of the ARC reactor as a load-following plant in the energy framework. Energy Policy 2019, 216, 66–75. [Google Scholar] [CrossRef]
- Kovari, M.; Kemp, R.; Lux, H.; Knight, P.J.; Morris, J.; Ward, D.J. “PROCESS”: A systems code for Fusion Power Plants, Part I: Physics. Fusion Eng. Des. 2014, 89, 3054–3069. [Google Scholar] [CrossRef]
- EUROfusion. EUROfusion Collaborators. Available online: https://collaborators.euro-Fusion.org/collaborators/socio-economics (accessed on 11 November 2019).
- Mühlich, P.; Hamacher, P. Global Transportation scenarios in the multi-regional EFDA-TIMES energy model. Fusion Eng. Design 2009, 84, 1361. [Google Scholar] [CrossRef]
- Capros, P.; van Regemorter, D.; Paroussos, L.; Karkatsoulis, P. GEM-E3 Model Documentation; Publications Office of the European Union: Luxembourg, 2013.
- Loulou, R.; Labriet, M. ETSAP-TIAM: The TIMES Integrated Assessment model Part I: Model structure. Comput. Manag. Sci. 2007, 5, 7–40. [Google Scholar] [CrossRef]
- Nijs, W.; Ruiz, P. 01_JRC-EU-TIMES Full Model. 2019. Available online: http://data.europa.eu/89h/8141a398-41a8-42fa-81a4-5b825a51761b (accessed on 11 November 2019).
- Hao, H.; Geng, Y.; Sarkis, J. Carbon footprint of global passenger cars: Scenarios through 2050. Energy 2016, 101, 121–131. [Google Scholar] [CrossRef]
- Bosetti, V.; Longden, T. Light duty vehicle Transportation and global climate policy: The importance of electric drive vehicles. Energy Policy 2013, 58, 209–219. [Google Scholar] [CrossRef] [Green Version]
- IEA. IEA Mobility Model. Available online: https://www.iea.org/etp/etpmodel/Transport (accessed on 11 November 2019).
- IEA. Energy Technology Perspectives 2017; IEA Publications: Paris, France, 2017. [Google Scholar]
- Cabal, H.; Lechon, Y.; Bustreo, C.; Gracceva, F.; Biberacher, M.; Ward, D.; Dongiovanni, D.; Grohnheit, P.E. Fusion power in a future low carbon global Electricity system. Energy Strat. Rev. 2017, 15, 1–8. [Google Scholar] [CrossRef]
- Vaillancourt, K.; Labriet, M.; Loulou, R.; Waaub, J.P. The role of nuclear energy in long-term climate scenarios: An analysis with the World-TIMES model. Energy Policy 2008, 36, 2296–2307. [Google Scholar] [CrossRef]
- Tokimatsua, K.; Fujino, J.; Konishi, S.; Ogawa, Y.; Yamaji, K. Role of nuclear fusion in future energy systems and the environment under future uncertainties. Energy Policy 2003, 31, 775–797. [Google Scholar] [CrossRef]
- Eurostat. Eurostat Energy Balances. Available online: https://ec.europa.eu/eurostat/web/energy/data/energy-balances (accessed on 26 November 2019).
- DAT Deutsche Automobil Treuhand GmbH. Leitfaden über den Kraftstoffverbrauch, die CO2-Emissionen und den Stromverbrauch Aller Neuen Personenkraftwagenmodelle, die in Deutschland zum Verkauf Angeboten Werden; DAT Deutsche Automobil Treuhand GmbH: Ostfildern, Germany, 2018. [Google Scholar]
- Engineering Toolbox. Fuels Properties Database. Available online: https://www.engineeringtoolbox.com (accessed on 26 November 2019).
- Bernard, Y.; Tietge, U.; German, J.; Muncrief, R. ICCT. 2018. Available online: https://theicct.org/publications/true-real-world-pv-emissions-rating-system (accessed on 26 November 2019).
- Mårtensson, L. “Emissions from Volvo’s trucks,” Volvo Trucks. 2018. Available online: https://www.volvotrucks.com/content/dam/volvo/volvo-trucks/markets/global/pdf/our-trucks/Emis_eng_10110_14001.pdf (accessed on 26 November 2019).
- ACEA. ACEA Tax Guide; ACEA: Brussels, Belgium, 2019. [Google Scholar]
- Propfe, B.; Redelbach, M.; Santini, D.; Friedrich, H.E. Cost analysis of Plug in Hybrid Electric Vehicles including Maintenance & Repair costs and Resale Value. In Proceedings of the EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Los Angeles, CA, USA, 6–9 May 2016. [Google Scholar]
- Ordecsys, K.; Haloa, K. EFDA World TIMES Model Final Report; Ordecsys: Chêne-Bougeries, Switzerland, 2004. [Google Scholar]
- IEA-ETSAP. TIMES. Available online: https://iea-etsap.org/index.php/etsap-tools/model-generators/times. (accessed on 26 November 2019).
- Loulou, R.; Goldstein, G.; Kanudia, A.; Lettila, A.; Remme, U. Documentation for the TIMES Model—Part I; ETSAP: Paris, France, 2016. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. In Contribution of Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Dongiovanni, D.; Porfiri, M.T. Methodology for Investigating Safety Impact on Design and Costs, Report 2016; EUROfusion: Garching bei München, Germany, 2016. [Google Scholar]
- Krause, J.; Thiel, C.; Tsokolis, D.; Samaras, Z.; Rota, C.; Ward, A.; Prenninger, P.; Coosemans, T.; Neugebauer, S.; Verhoeve, W. EU Road Vehicle Energy Consumption and CO2 Emissions by 2050—Expert-Based Review. Energy Policy 2020, 138, 111224. [Google Scholar] [CrossRef]
- IEA. The Future of Trucks—Implications for Energy and the Environment; IEA Publications: Paris, France, 2017. [Google Scholar]
- Greenpeace. 5th Edition 2015 World Energy Scenarios; Greenpeace e.V.: Hamburg, Germany, 2015. [Google Scholar]
- European Commission. Energy Roadmap 2050; Publications Office of the European Union: Luxembourg, 2012.
- IEA. World Energy Outlook 2015; IEA Publications: Paris, France, 2015. [Google Scholar]
- IEA. World Energy Outlook 2018; IEA Publications: Paris, France, 2018. [Google Scholar]
- IEA. Global EV Outlook 2019—Scaling-up the Transition to Electric Mobility; IEA Publications: Paris, France, 2019. [Google Scholar]
- Toyota. Toyota Pressroom. 10 October 2019. Available online: https://pressroom.toyota.com/coupe-inspired-design-modernizes-all-new-2021-toyota-mirai-sedan/ (accessed on 19 February 2020).
- Fuel Cells and Hydrogen Joint Undertaking. Driving Hydrogen Fuel Cell Vehicles to the Market. 19 July 2017. Available online: https://www.fch.europa.eu/success-story/driving-hydrogen-fuel-cell-vehicles-market# (accessed on 19 February 2020).
- Ambel, C.C. Electric Trucks’ Contribution To Freight Decarbonization: How T&E’s Roadmap to Climate-Friendly Land Freight and Buses Would be Impacted by Electric Tractor-Trailer Trucks; Transport and Environment: Brussels, Belgium, 2017. [Google Scholar]
- European Commision. Reducing CO2 Emissions from Heavy-Duty Vehicles. Available online: https://ec.europa.eu/clima/policies/transport/vehicles/heavy_en (accessed on 21 February 2020).
- Capros, P.; Höglund-Isaksson, L.; Winiwarter, W.; Purohit, P.; Gomez-Sanabria, A.; Frank, S.; Forsell, N.; Gusti, M.; Havlík, P.; Obersteiner, M.; et al. EU Reference Scenario 2016—Energy, Transport and GHG Emissions—Trends to 2050; Publications Office of the Euroepean Union: Luxembourg, 2016.
- Seixas, J.; Simões, S.; Dias, L.; Kanudia, A.; Fortes, P.; Gargiulo, M. Assessing the cost-effectiveness of electric vehicles in European countries using integrated modelling. Energy Policy 2015, 80, 165−176. [Google Scholar] [CrossRef]
- IEA. IEA Statistics. Available online: https://www.iea.org/statistics/electricity (accessed on 26 November 2019).
Transport Mode | Code | Features |
---|---|---|
Passenger car | TRT | - |
Light truck | TRL | Includes SUVs and pick-ups |
Van | TRC | Up to 3.5 t Gross vehicle weight (GVW, for urban/regional freight transport) |
Two-wheeler | TRW | - |
Three-wheeler | TRE | - |
Medium truck | TRM | From 3.5 t up to 12 t GVW, for regional/national freight transport |
Heavy truck | TRH | From 12 t up to 60 t GVW, for national/international freight transport |
Bus | TRB | - |
Technology | Description | Fuel(s) |
---|---|---|
TR*GAS | Gasoline vehicle | Gasoline (GSL) |
TR*DST | Diesel vehicle | Gas oil (DST) |
TR*NGA | Natural gas vehicle | Natural gas (NGA) |
TR*LPG | LPG vehicle | Liquefied petroleum gas (LPG) |
TR*FLF | Flex-fuel vehicle | E85: GSL () + ETH () |
TR*ELC | Full-electric vehicle | Electricity (ELC) |
TR*GHE | Gasoline-electric hybrid vehicle | GSL |
TR*DHE | Diesel-electric hybrid vehicle | DST |
TR*GPH | Gasoline-plug-in electric hybridvehicle | Combination of gasoline and electricity (GSL () + ELC ()) |
TR*DPH | Diesel-plug-in electric hybrid vehicle | Combination of gas oil and electricity (DST () + ELC () |
TR*FCE | Fuel cell vehicle | Hydrogen (HH2) |
Technology | Initials | Fuel |
---|---|---|
Gasoline vehicle | TR*GAS | Gasoline |
Diesel vehicle | TR*DST | Gas oil |
Natural gas vehicle | TR*NGA | Natural gas |
LPG vehicle | TR*LPG | LPG |
Biofuel vehicle | TR*ETH | Ethanol |
Electric vehicle | TR*ELC | Electricity |
Hydrogen vehicle | TR*HH2 | Hydrogen |
Efficiency Ratio | |
---|---|
Size Category | GAS | DST | LPG | NGA | FLF | ELC | GHE | GPH | FCE |
---|---|---|---|---|---|---|---|---|---|
Mini | 0.49 | - | 0.46 | 0.48 | 0.49 | 1.68 | - | - | - |
Small | 0.44 | 0.51 | 0.41 | 0.42 | 0.44 | 1.37 | 0.68 | - | - |
Medium | - | 0.47 | 0.37 | 0.39 | 0.39 | 1.29 | 0.56 | 0.83 | - |
Large | 0.36 | 0.42 | - | - | 0.36 | 1.09 | 0.52 | 0.76 | 0.70 |
Small SUV | 0.39 | 0.46 | 0.41 | 0.43 | 0.39 | 1.30 | 0.56 | 0.83 | - |
Compact SUV | 0.35 | 0.42 | 0.36 | - | 0.35 | 1.04 | 0.47 | 0.67 | 0.71 |
Full-Size SUV | 0.30 | 0.35 | - | - | - | - | - | 0.54 | - |
Pick-Up | 0.27 | 0.30 | 0.27 | 0.28 | 0.27 | 0.98 | 0.36 | - | - |
GSL | DST | LPG | NGA | FLF | ELC | GHE | DHE | GPH | DPH | FCE | |
---|---|---|---|---|---|---|---|---|---|---|---|
TRT | 0.39 | 0.47 | 0.37 | 0.39 | 0.40 | 1.29 | 0.56 | - | 0.76 | - | 0.70 |
TRC | 0.30 | 0.34 | 0.30 | 0.28 | 0.30 | 0.98 | - | 0.33 | - | 0.72 | - |
TRL | 0.35 | 0.42 | 0.36 | - | 0.35 | 1.04 | 0.47 | - | 0.67 | - | - |
TRW | 1.19 | 1.40 | - | - | - | 3.81 | 1.77 | - | - | - | - |
TRE | 1.12 | 1.35 | - | - | - | 3.60 | - | - | - | - | - |
TRM | 0.09 | 0.11 | 0.09 | 0.09 | 0.09 | 0.31 | - | 0.11 | - | - | - |
TRH | 0.04 | 0.05 | 0.04 | 0.04 | 0.04 | 0.13 | - | 0.05 | - | - | - |
TRB | 0.05 | 0.06 | 0.05 | 0.05 | 0.05 | 0.16 | - | 0.06 | - | - | 0.10 |
GAS | DST | LPG | NGA | FLF | ELC | GHE | DHE | GPH | DPH | FCE | |
---|---|---|---|---|---|---|---|---|---|---|---|
TRT | 2′242 | 2′425 | 2′425 | 2′425 | 2′242 | 4′370 | 2′708 | - | 4′260 | - | 6′300 |
TRC | 2′892 | 2′892 | 3′358 | 3′358 | 2′892 | 7′210 | - | 3′450 | - | 5′500 | - |
TRL | 2′750 | 2′933 | 2′933 | - | 2′750 | 10′890 | 3′208 | - | 5′610 | - | - |
TRW | 933 | 1′025 | - | - | - | 2′312 | 1′402 | - | - | - | - |
TRE | 283 | 308 | - | - | - | 687 | - | - | - | - | - |
TRM | 5′600 | 5′973 | 5′900 | 5′900 | 5′500 | 13′780 | - | 6′647 | - | - | - |
TRH | 10′600 | 11′273 | 11′200 | 11′200 | 10′600 | 26′080 | - | 12′620 | - | - | - |
TRB | 8′287 | 8′440 | 8′813 | 8′813 | 8′287 | 20′500 | - | 9′933 | - | - | 35′850 |
GSL | DST | LPG | NGA | FLF | ELC | GHE | DHE | GPH | DPH | FCE | |
---|---|---|---|---|---|---|---|---|---|---|---|
TRT | 0.081 | 0.081 | 0.083 | 0.083 | 0.083 | 0.066 | 0.080 | - | 0.077 | - | 0.090 |
TRC | 0.138 | 0.131 | 0.129 | 0.136 | 0.142 | 0.113 | - | 0.121 | - | 0.097 | - |
TRL | 0.096 | 0.095 | 0.087 | - | 0.099 | 0.090 | 0.096 | - | 0.070 | - | - |
TRW | 0.011 | 0.010 | - | - | - | 0.008 | 0.009 | - | - | - | - |
TRE | 0.031 | 0.029 | - | - | - | 0.022 | - | - | - | - | - |
TRM | 0.493 | 0.469 | 0.460 | 0.486 | 0.507 | 0.307 | - | 0.431 | - | - | - |
TRH | 1.848 | 1.759 | 1.726 | 1.822 | 1.899 | 1.153 | - | 1.615 | - | - | - |
TRB | 1.016 | 0.968 | 0.949 | 1.002 | 1.045 | 0.634 | - | 0.888 | - | - | 0.678 |
Storyline | A | B | C | |
---|---|---|---|---|
Feature | ||||
Environmental responsibility | Strong, driven by RCP 2.6 | Strong, driven by RCP 2.6 | Weak, driven by RCP 6 | |
Investment policies | Medium-term (medium disc. rate) | Long-term (low discount rate) | Short-term (high discount rate) | |
Demand elasticity | Medium | Low | High | |
Cooperation between countries | Moderate | High | Very low |
Type of Plant | Start | Inv. Cost | Fixed O&M | Var. O&M | Efficiency |
---|---|---|---|---|---|
Basic plant A | 2070 | 5910 | 65.8 | 2.2 | 42 |
Basic plant B | 2080 | 4425 | 65.8 | 1.6 | 42 |
Advanced plant A | 2090 | 4220 | 65.3 | 2.1 | 60 |
Advanced plant B | 2100 | 3255 | 65.3 | 1.6 | 60 |
Specific Aspect | ETM Outcome | Other Model Results | Source |
---|---|---|---|
Road fleet total energy consumption @ 2050 | A: B: C: | HEH *: HE **: MIX ***: | [31] |
Final energy demand (2050 wrt 2010) | A: B: C: | (2050 wrt 2009) depending on the scenario | [34] |
Final energy demand (2040 wrt 2010) | A: B C: | (2040 wrt 2013) NPS #: | [35] |
Share of electricity in road transport energy demand (2040) | A: B: C: | NPS #: | [35] |
Share of biofuels in road transport energy demand (2040) | A: B: C: | NPS #: | [35] |
Share of electricity in transport energy demand (2040) | A: B: C: | NPS #: CPS °°°: SDS °°°°: | [36] |
Electricity demand for road transport in Europe (2030) | A: B: C: | NPS #: EV30@30 $: | [37] |
Share of electricity demand in road transport @ 2030 | A: B: C: | (2030) | [33] |
Share of electricity demand in road transport @ 2050 | A: B: C: | (2050) | [33] |
Specific Aspect | ETM Outcome | Other Model Results | Source |
---|---|---|---|
Alternative fuel power share in the HDV fleet by 2050 | A: (Mostly hybrid and fully electric) B: (Mostly fully electric) C: (Mostly flex-fuel + hybrid) | (electric + hybrid) | [40] |
Alternative Fuel Power share in the HDV fleet by 2030 | A: B: C: | [42] |
Specific Aspect | ETM Outcome | Value | Source |
---|---|---|---|
Electric car (fully electric + plug-in hybrid) share in 2050 | A: B: 58 C: | [34] | |
Electric car share in 2040 | A: B: C: | NPS #: Negligible | [35] |
Full-electric (BEV) and plug-in hybrid (PHEV) share among electric cars in Europe (2050) | A: (BEV)–(PHEV) B: (BEV)– (PHEV) C: (BEV)– (PHEV) | C70 *: (BEV)– (PHEV) REF **: (BEV)– (PHEV) | [43] |
Salient result | ETM Outcome | Value | Source |
---|---|---|---|
Transport emission reduction from 2010 to 2050 | A: B: C: | (2009 to 2050) | [33] |
Transport emission reduction from 2010 to 2050 | A: B: C: | (2015 to 2050) HE *: HEH **: MIX ***: | [31] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lerede, D.; Bustreo, C.; Gracceva, F.; Lechón, Y.; Savoldi, L. Analysis of the Effects of Electrification of the Road Transport Sector on the Possible Penetration of Nuclear Fusion in the Long-Term European Energy Mix. Energies 2020, 13, 3634. https://doi.org/10.3390/en13143634
Lerede D, Bustreo C, Gracceva F, Lechón Y, Savoldi L. Analysis of the Effects of Electrification of the Road Transport Sector on the Possible Penetration of Nuclear Fusion in the Long-Term European Energy Mix. Energies. 2020; 13(14):3634. https://doi.org/10.3390/en13143634
Chicago/Turabian StyleLerede, Daniele, Chiara Bustreo, Francesco Gracceva, Yolanda Lechón, and Laura Savoldi. 2020. "Analysis of the Effects of Electrification of the Road Transport Sector on the Possible Penetration of Nuclear Fusion in the Long-Term European Energy Mix" Energies 13, no. 14: 3634. https://doi.org/10.3390/en13143634
APA StyleLerede, D., Bustreo, C., Gracceva, F., Lechón, Y., & Savoldi, L. (2020). Analysis of the Effects of Electrification of the Road Transport Sector on the Possible Penetration of Nuclear Fusion in the Long-Term European Energy Mix. Energies, 13(14), 3634. https://doi.org/10.3390/en13143634