Evaluation of an Uncoupled Method for Analyzing the Seismic Response of Wind Turbines Excited by Wind and Earthquake Loads
Abstract
:1. Introduction
2. Numerical Modeling
2.1. Wind Field
2.2. Earthquake Load
2.3. Coupled and Uncoupled Methods
3. Vibration and Aerodynamic Loadings on the Rotor
3.1. Oscillation Velocity of the Blade in the FA Direction
3.1.1. Excited by Wind
3.1.2. Excited by Wind and Earthquake
3.2. Aerodynamic Loadings on the Rotor
4. Comparisons of the Coupled and Uncoupled Methods
4.1. Response Time History
4.2. Response Amplitude
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Manwell, J.F.; Mcgowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design and Application; Wiley: Chichester, UK, 2010. [Google Scholar]
- Global Wind Energy Council (GWEC). Global Wind Report: Annual Market Update 2019. Available online: https://gwec.net/wp-content/uploads/2020/04/GWEC-Global-Wind-Report-2019.pdf (accessed on 20 May 2020).
- Katsanos, E.I.; Thöns, S.; Georgakis, C.Τ. Wind turbines and seismic hazard: A state-of-the-art review. Wind Energy 2016, 19, 2113–2133. [Google Scholar] [CrossRef] [Green Version]
- International Electrotechnical Commission (IEC). Wind Turbine-Part 1: Design Requirements, 3rd ed.; IEC 61400-1: Geneva, Switzerland, 2005. [Google Scholar]
- Germanischer Lloyd (GL). Guideline for the Certification of Wind Turbines; GL Renewables Certification: Hamburg, Germany, 2005. [Google Scholar]
- Witcher, D. Seismic analysis of wind turbines in the time domain. Wind Energy 2005, 8, 81–91. [Google Scholar] [CrossRef]
- Prowell, I.; Elgamal, A.; Uang, C.; Jonkman, J. Estimation of seismic load demand for a wind turbine in the time domain. In Proceedings of the European Wind Energy Conference (EWEC), Warsaw, Poland, 20–23 April 2010. [Google Scholar]
- Prowell, I.; Elgamal, A.; Uang, C.M.; Enrique, L.J.; Romanowitz, H.; Duggan, E. Shake table testing and numerical simulation of a utility-scale wind turbine including operational effects. Wind Energy 2014, 17, 997–1016. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, Y.; Li, C.; Zou, J. Analysis of the Seismic Time-frequency Characteristics of the Derrick of a Wind Turbine Under a Soil-foundation-Structure Coupled Action. J. Eng. Therm. Energy Power 2018, 33, 129–136. (In Chinese) [Google Scholar]
- Zou, J.; Yang, Y.; Li, C.; Liu, Z.; Yuan, Q. Nonlinear characteristics of wind turbine tower vibration under turbulent wind and earthquake. J. Vib. Shock 2019, 38, 57–64. (In Chinese) [Google Scholar]
- Asareh, M.A.; Schonberg, W.; Volz, J. Effects of seismic and aerodynamic load interaction on structural dynamic response of multi-megawatt utility scale horizontal axis wind turbines. Renew. Energy 2016, 86, 49–58. [Google Scholar] [CrossRef]
- Yuan, C.; Chen, J.; Li, J.; Xu, Q. Fragility analysis of large-scale wind turbines under the combination of seismic and aerodynamic loads. Renew. Energy 2017, 113, 1122–1134. [Google Scholar] [CrossRef]
- Yang, Y.; Ye, K.; Li, C.; Michailides, C.; Zhang, W. Dynamic behavior of wind turbines influenced by aerodynamic damping and earthquake intensity. Wind Energy 2018, 21, 1–17. [Google Scholar] [CrossRef]
- Hänler, M.; Ritschel, U.; Warnke, I. Systematic modelling of wind turbine dynamics and earthquake loads on wind turbines. In Proceedings of the European Wind Energy Conference and Exhibition, Athens, Greece, 27 February–2 March 2006. [Google Scholar]
- He, Y.; Wang, L.; Du, J.; Jin, X. Vibration simulation analysis of wind turbine under seismic load. Acta Energ. Sol. Sin. 2012, 33, 179–184. (In Chinese) [Google Scholar]
- Jin, X.; Liu, H.; Ju, W. Wind turbine seismic load analysis based on numerical calculation. Slov. J. Mech. Eng. 2014, 60, 638–648. [Google Scholar] [CrossRef]
- Peng, C. Seismic dynamic response analysis of wind turbine. Acta Energ. Sol. Sin. 2016, 37, 3189–3194. (In Chinese) [Google Scholar]
- Wang, W.; Gao, Z.; Li, X.; Moan, T. Model test and numerical analysis of a multi-pile offshore wind turbine under seismic, wind, wave, and current loads. J. Offshore Mech. Arct. Eng. 2017, 139, 031901. [Google Scholar] [CrossRef]
- Bazeos, N.; Hatzigeorgiou, G.D.; Hondros, I.D.; Karamaneas, H.; Karabalis, D.L.; Beskos, D.E. Static, seismic and stability analyses of a prototype wind turbine steel tower. Eng. Struct. 2002, 24, 1015–1025. [Google Scholar] [CrossRef]
- Lavassas, I.; Nikolaidis, G.; Zervas, P.; Efthimiou, E.; Doudoumis, I.N.; Baniotopoulos, C.C. Analysis and design of the prototype of a steel 1-MW wind turbine tower. Eng. Struct. 2003, 25, 1097–1106. [Google Scholar] [CrossRef]
- Kiyomiya, O.; Rikiji, T.; van Gelder, P.H. Dynamic response analysis of onshore wind energy power units during earthquakes and wind. In Proceedings of the Twelfth International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers, Kitakyushu, Japan, 26–31 May 2002. [Google Scholar]
- He, G.; Li, J. Seismic analysis of wind turbine system including soil-structure interaction. In Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008. [Google Scholar]
- Martinez-Vazquez, P.; Gkantou, M.; Baniotopoulos, C. Strength demands of tall wind turbines subject to earthquakes and wind load. Procedia Eng. 2017, 199, 3212–3217. [Google Scholar] [CrossRef]
- Zhao, X.; Maißer, P. Seismic response analysis of wind turbine towers including soil structure interaction. Proc. Inst. Mech. Eng. K J. Multi Body Dyn. 2006, 220, 53–61. [Google Scholar] [CrossRef]
- Hansen, M.O.L.; Sørensen, J.N.; Voutsinas, S.; Sørensen, N.; Madsen, H.A. State of the art in wind turbine aerodynamics and aeroelasticity. Prog. Aeosp. Sci. 2006, 42, 285–330. [Google Scholar] [CrossRef]
- Ritschel, U.; Warnke, I.; Kirchner, J.; Meussen, B. Wind turbines and earthquakes. In Proceedings of the 2nd World Wind Energy Conference, Cape Town, South Africa, 23–26 November 2003. [Google Scholar]
- Ishihara, T.; Sarwar, M.W. Numerical and theoretical study on seismic response of wind turbines. In Proceedings of the European Wind Energy Conference and Exhibition, Brussels, Belgium, 31 March–3 April 2008. [Google Scholar]
- Fan, J.; Li, Q.; Zhang, Y. Collapse analysis of wind turbine tower under the coupled effects of wind and near-field earthquake. Wind Energy 2019, 22, 407–419. [Google Scholar] [CrossRef]
- Smith, V.; Mahmoud, H. Multihazard assessment of wind turbine towers under simultaneous application of wind, operation, and seismic loads. J. Perform. Constr. Facil. 2016, 30, 04016043. [Google Scholar] [CrossRef]
- Asareh, M.A.; Schonberg, W.; Volz, J. Fragility analysis of a 5-MW NREL wind turbine considering aero-elastic and seismic interaction using finite element method. Finite Elem. Anal. Des. 2016, 120, 57–67. [Google Scholar] [CrossRef]
- Santangelo, F.; Failla, G.; Santini, A.; Arena, F. Time-domain uncoupled analyses for seismic assessment of land-based wind turbines. Eng. Struct. 2016, 123, 275–299. [Google Scholar] [CrossRef]
- Santangelo, F.; Failla, G.; Arena, F.; Ruzzo, C. On time-domain uncoupled analyses for offshore wind turbines under seismic loads. Bull. Earthq. Eng. 2018, 16, 1007–1040. [Google Scholar] [CrossRef]
- Failla, G.; Santangelo, F.; Foti, G.; Scali, F.; Arena, F. Response-spectrum uncoupled analyses for seismic assessment of offshore wind turbines. J. Mar. Sci. Eng. 2018, 6, 85. [Google Scholar] [CrossRef] [Green Version]
- Zuo, H.; Bi, K.; Hao, H. Dynamic analyses of operating offshore wind turbines including soil-structure interaction. Eng. Struct. 2018, 157, 42–62. [Google Scholar] [CrossRef]
- Zuo, H.; Bi, K.; Hao, H.; Li, C. Influence of earthquake ground motion modelling on the dynamic responses of offshore wind turbines. Soil Dyn. Earthq. Eng. 2019, 121, 151–167. [Google Scholar] [CrossRef]
- Mo, R.; Kang, H.; Li, M.; Zhao, X. Seismic fragility analysis of monopile offshore wind turbines under different operational conditions. Energies 2017, 10, 1037. [Google Scholar] [CrossRef] [Green Version]
- Ju, S.H.; Huang, Y.C. Analyses of offshore wind turbine structures with soil-structure interaction under earthquakes. Ocean Eng. 2019, 187, 106190. [Google Scholar] [CrossRef]
- Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5-MW Reference Wind Turbine for Offshore System Development; Technical Report NREL/TP-500-38060; National Renewable Energy Lab: Golden, CO, USA, 2009.
- Jonkman, J.M.; Buhl, M.L., Jr. Fast User’s Guide-Updated August 2005; Technical Report NREL/TP-500-38230; National Renewable Energy Lab: Golden, CO, USA, 2005.
- Jonkman, B.J. TurbSim User’s Guide: Version 1.50; Technical Report NREL/TP-500-46198; National Renewable Energy Laboratory: Golden, CO, USA, 2009.
- Stamatopoulos, G.N. Response of a wind turbine subjected to near-fault excitation and comparison with the Greek aseismic code provisions. Soil Dyn. Earthq. Eng. 2013, 46, 77–84. [Google Scholar] [CrossRef]
- ATC. Quantifcation of Building Seismic Performance Factors; Report NO. FEMAP695; Applied Technology Council: Redwood City, CA, USA, 2009. [Google Scholar]
- Prowell, I.; Elgamal, A.; Jonkman, J. FAST Simulation of Wind Turbine Seismic Response; Technical Report NREL/CP-500-46225; National Renewable Energy Laboratory: Golden, CO, USA, 2010.
- Leger, P.; Ide, I.M.; Paultre, P. Multiple support seismic analysis of large structures. Comput. Struct. 1990, 36, 1153–1158. [Google Scholar] [CrossRef]
- Mardfekri, M. Multi-hazard reliability assessment of offshore wind turbines. Eng. Struct. 2013, 52, 478–487. [Google Scholar] [CrossRef]
- Burton, T.; Sharpe, D.; Jenkins, N.; Bossanyi, E. Wind Energy Handbook; Wiley: New York, NY, USA, 2011. [Google Scholar]
- Valamanesh, V.; Myers, A. Aerodynamic damping and seismic response of horizontal axis wind turbine towers. J. Struct. Eng. 2014, 140, 04014090. [Google Scholar] [CrossRef]
- Liu, X.; Lu, C.; Li, G.; Godbole, A.; Chen, Y. Effects of aerodynamic damping on the tower load of offshore horizontal axis wind turbines. Appl. Energy 2017, 204, 1101–1114. [Google Scholar] [CrossRef] [Green Version]
- Chao, C.; Philippe, D. Modelling damping sources in monopile-supported offshore wind turbines. Wind Energy 2018, 21, 1121–1140. [Google Scholar]
- Hibbeler, R.C. Engineering Mechanics: Dynamic, 10th ed.; Pearson Education: New York, NY, USA, 2003. [Google Scholar]
- Moriarty, P.J.; Hansen, A.C. AeroDyn Theory Manual; Technical Report NREL/EL-500-36881; National Renewable Energy Laboratory: Golden, CO, USA, 2005.
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for Seismic Design of Buildings; China Architecture & Building Press: Beijing, China, 2010.
Part/Item | Property | Value |
---|---|---|
Blade | Rotor diameter | 126 m |
Hub height | 90 m | |
Cut-in, rated and cut-out wind speed | 3 m/s, 11.4 m/s, 25 m/s | |
Cut-in and rated rotor speed | 6.9 rpm, 12.1 rpm | |
Length | 61.5 m | |
Overall mass | 17,740 kg | |
Structural damping ratio | 0.5% | |
Hub and nacelle | Hub diameter | 3 m |
Hub mass | 56,780 kg | |
Nacelle mass | 240,000 kg | |
Tower | Bottom and top outer diameter | 6 m, 3.87 m |
Bottom and top wall thickness | 0.027 m, 0.019 m | |
Overall mass | 347,460 kg | |
Structural damping ratio | 1% |
Modes | Description | Natural Frequency (Hz) |
---|---|---|
1 | 1st Tower Fore-Aft | 0.3240 |
2 | 1st Tower Side-to-Side | 0.3120 |
3 | 1st Drivetrain Torsion | 0.6205 |
4 | 1st Blade Asymmetric Flapwise Yaw | 0.6664 |
5 | 1st Blade Asymmetric Flapwise Pitch | 0.6675 |
6 | 1st Blade Collective Flap | 0.6993 |
7 | 1st Blade Asymmetric Edgewise Pitch | 1.0793 |
8 | 1st Blade Asymmetric Edgewise Yaw | 1.0898 |
9 | 2nd Blade Asymmetric Flapwise Yaw | 1.9337 |
10 | 2nd Blade Asymmetric Flapwise Pitch | 1.9223 |
11 | 2nd Blade Collective Flap | 2.0205 |
12 | 2nd Tower Fore-Aft | 2.9003 |
13 | 2nd Tower Side-to-Side | 2.9361 |
ID. | Event | Year | Station | Manitude | Component | PGA(g) |
---|---|---|---|---|---|---|
1 | Kocaeli, Turkey | 1999 | Arcelik | 7.5 | ARC000 | 0.22 |
2 | Duzce, Turkey | 1999 | Bolu | 7.1 | BOL000 | 0.73 |
3 | Loma Prieta | 1989 | Capitola | 6.9 | CAP000 | 0.53 |
4 | Chi-Chi, Taiwan | 1999 | CHY101 | 7.6 | CHY101-E | 0.35 |
5 | Imperial Valley | 1979 | Delta | 6.5 | DLT262 | 0.24 |
6 | Kocaeli, Turkey | 1999 | Duzce | 7.5 | DZC180 | 0.31 |
7 | Imperial Valley | 1979 | El Centro Array #11 | 6.5 | H-E11140 | 0.36 |
8 | Loma Prieta | 1989 | Gilroy Array #3 | 6.9 | G03090 | 0.37 |
9 | Hector Mine | 1999 | Hector | 7.1 | HEC090 | 0.34 |
10 | Superstition Hills | 1987 | El Centro Imp. Co. | 6.5 | B-ICC090 | 0.26 |
11 | Northridge | 1994 | Canyon Country-WLC | 6.7 | LOS000 | 0.41 |
12 | Northridge | 1994 | Beverly Hills-Mulhol | 6.7 | MUL009 | 0.42 |
13 | Kobe, Japan | 1995 | Nishi-Akashi | 6.9 | NIS000 | 0.51 |
14 | San Fernando | 1971 | LA-Hollywood Stor | 6.6 | PEL090 | 0.21 |
15 | Superstition Hills | 1987 | Poe Road (temp) | 6.5 | POE360 | 0.30 |
16 | Cape Mendocino | 1992 | Rio Dell Overpass | 7.0 | RIO270 | 0.39 |
17 | Kobe, Japan | 1995 | Shin-Osaka | 6.9 | SHI000 | 0.24 |
18 | Friuli, Italy | 1976 | Tolmezzo | 6.5 | TMZ000 | 0.31 |
19 | Landers | 1992 | Yermo Fire Station | 7.3 | YER270 | 0.24 |
20 | Manjil, Iran | 1990 | Abbar | 7.4 | ABBAR-T | 0.21 |
21 | Darfield | 2010 | Christchurch Cathedral College | 7.0 | CN26W | 0.19 |
22 | Chi-Chi, Taiwan | 1999 | CHY104 | 7.6 | CHY104-N | 0.17 |
23 | Mexico | 2010 | Calexico Fire Station | 7.2 | CXO090 | 0.27 |
24 | Mexico | 2010 | Cerro Prieto Geothermal | 7.2 | GEO000 | 0.26 |
25 | Darfield | 2010 | Christchurch Hospital | 7.0 | HCS89W | 0.15 |
26 | Chi-Chi, Taiwan | 1999 | TCU070 | 7.6 | TCU070-N | 0.16 |
27 | Chi-Chi, Taiwan | 1999 | TCU109 | 7.6 | TCU109-N | 0.16 |
28 | Duzce, Turkey | 1999 | Duzce | 7.1 | DZC-180 | 0.30 |
29 | Imperial Valley | 1979 | El Centro Array-6 | 6.5 | H-E06230 | 0.44 |
30 | Imperial Valley | 1979 | El Centro Array-7 | 6.5 | H-E07140 | 0.34 |
31 | Erzican, Turkey | 1992 | Erzincan | 6.7 | ERZ-NS | 0.51 |
32 | Kocaeli, Turkey | 1999 | Izmit | 7.5 | LZT090 | 0.22 |
33 | Landers | 1992 | Lucerne | 7.3 | LCN260 | 0.73 |
34 | Cape Mendocino | 1992 | Petrolia | 7.0 | PET090 | 0.66 |
35 | Superstition Hills | 1987 | Parachute Test Site | 6.5 | PTS225 | 0.45 |
36 | Northridge-01 | 1994 | Rinaldi Receiving Sta | 6.7 | RRS228 | 0.83 |
37 | Loma Prieta | 1989 | Saratoga-Aloha | 6.9 | STG090 | 0.32 |
38 | Irpinia, Italy | 1980 | Sturno | 6.9 | STU270 | 0.36 |
39 | Northridge | 1994 | Sylmar-Olive View | 6.7 | SYL360 | 1.68 |
40 | Chi-Chi, Taiwan | 1999 | TCU065 | 7.6 | TCU065-E | 0.81 |
41 | Chi-Chi, Taiwan | 1999 | TCU102 | 7.6 | TCU102-E | 0.30 |
42 | Northridge-01 | 1994 | LA-Sepulveda VA | 6.7 | 0637-360 | 0.93 |
43 | Imperial Valley-06 | 1979 | Bonds Corner | 6.5 | BCR140 | 0.59 |
44 | Loma Prieta | 1989 | BRAN | 6.9 | BRN000 | 0.48 |
45 | Imperial Valley-06 | 1979 | Chihuahua | 6.5 | CHI282 | 0.25 |
46 | Loma Prieta | 1989 | Corralitos | 6.9 | CLS000 | 0.68 |
47 | Gazli | 1976 | Karakyr | 6.8 | GAZ0 | 0.61 |
48 | Nahanni | 1985 | Site 2 | 6.8 | S2240 | 0.49 |
49 | Nahanni | 1985 | Site 1 | 6.8 | S1010 | 0.91 |
50 | Northridge | 1994 | Northridge-Saticoy | 6.7 | STC090 | 0.37 |
51 | Chi-Chi, Taiwan | 1999 | TCU067 | 7.6 | TCU067-E | 0.50 |
52 | Chi-Chi, Taiwan | 1999 | TCU084 | 7.6 | TCU084-E | 1.16 |
53 | Kocaeli, Turkey | 1999 | Yarimca | 7.5 | YPT330 | 0.35 |
Model | Tower-Top Displacement | Tower-Top Acceleration | Tower-Base Shear-Force | Tower-Base Bending-Moment |
---|---|---|---|---|
m | m/s2 | MN | MN·m | |
coupled | 0.53 | 1.61 | 3.04 | 120 |
uncouple | 0.51 | 0.71 | 2.14 | 90 |
Model | Tower-Top Displacement | Tower-Top Acceleration | Tower-Base Shear-Force | Tower-Base Bending-Moment |
---|---|---|---|---|
m | m/s2 | MN | MN·m | |
coupled | 1.05 | 3.15 | 2.18 | 172 |
uncouple | 1.25 | 4.03 | 2.49 | 211 |
Mean Wind Speed at Hub, Vhub | Wind Samples |
---|---|
5 m/s | 5 |
11.4 m/s | 5 |
18 m/s | 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, R.; Wang, P.; Du, X.; Xu, C.; Jia, J. Evaluation of an Uncoupled Method for Analyzing the Seismic Response of Wind Turbines Excited by Wind and Earthquake Loads. Energies 2020, 13, 3833. https://doi.org/10.3390/en13153833
Xi R, Wang P, Du X, Xu C, Jia J. Evaluation of an Uncoupled Method for Analyzing the Seismic Response of Wind Turbines Excited by Wind and Earthquake Loads. Energies. 2020; 13(15):3833. https://doi.org/10.3390/en13153833
Chicago/Turabian StyleXi, Renqiang, Piguang Wang, Xiuli Du, Chengshun Xu, and Junbo Jia. 2020. "Evaluation of an Uncoupled Method for Analyzing the Seismic Response of Wind Turbines Excited by Wind and Earthquake Loads" Energies 13, no. 15: 3833. https://doi.org/10.3390/en13153833
APA StyleXi, R., Wang, P., Du, X., Xu, C., & Jia, J. (2020). Evaluation of an Uncoupled Method for Analyzing the Seismic Response of Wind Turbines Excited by Wind and Earthquake Loads. Energies, 13(15), 3833. https://doi.org/10.3390/en13153833