2D Simulation for CH4 Internal Reforming-SOFCs: An Approach to Study Performance Degradation and Optimization
Abstract
:1. Introduction
- External reforming (ER): SOFCs and reforming units are two distinct blocks. In the reforming reactor, H2 is produced from light hydrocarbons and consequently fed to the fuel cell anode inlet;
- Indirect internal reforming (IIR): SOFCs and reforming units are two neighboring blocks in order to favor thermal exchanges;
- Direct internal reforming (DIR): the reforming takes places inside SOFCs using the Ni-based anode material as catalyst.
2. CH4 Internal Reforming Modeling
2.1. The Cell Reactions
2.2. A Model for Steam Reforming Reaction
- equilibrium;
- power law kinetic formulation;
- surface reaction kinetic model.
3. The DIR-SOFC simulation
4. Results and Discussion
4.1. Analysis of DIR-SOFC Operation at Local Level
4.2. Possible Applications of Local Simulation Tool
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
A, B, C | Kinetics orders for exchange current density [–] |
D | Diffusion coefficient [m2 s−1] |
d | Thickness [m] |
E | OCV potential [V] |
E0 | Reversible voltage [V] |
Eact | Activation energy [J mol−1] |
F | Faraday constant [C mol−1] |
G | Gibbs free energy [J mol−1] |
Hads | Adsorption enthalpy [J mol−1] |
J | Current density [A m−2] |
J0 | Exchange current density [A m−2] |
K | Adsorption coefficient |
K0 | Adsorption pre-exponential coefficient |
Keq | Equilibrium constant [atm2] |
k | Kinetics constant |
k0 | Kinetics pre-exponential constant |
N | Volumetric flow rate [Nm3 h−1] |
P | Electrochemical parameter |
p | Pressure [atm] |
Q | Reaction quotient [atm2] |
R | Gas constant [J mol−1 K−1] |
r | Reaction rate [mol s−1] |
S | Active area [m2] |
T | Temperature [K] |
V | Cell voltage [V] |
y | Molar fraction [-] |
Greek letters | |
α, β, γ, δ, ε | Power law kinetic coefficients [-] |
λ, φ, χ | Steam reforming LH-HW kinetic orders [-] |
η | Overpotential [V] |
σ | Active area corrective coefficient [-] |
Subscript | |
an | Anode |
cat | Cathode |
eff | Effective |
eq | Equilibrium |
SR | Steam Reforming |
Abbreviations | |
DIR | Direct Internal Reforming |
DR | Dry Reforming |
ER | External Reforming |
IIR | Indirect Internal Reforming |
LSC | Lanthanum Strontium Cobaltite |
OCV | Open Circuit Voltage |
SIMFC | SIMulation of Fuel Cell |
SOFC | Solid Oxide Fuel Cell |
SR | Steam Reforming |
WGS | Water Gas Shift |
YSZ | Yttria-Stabilized Zirconia |
References
- Al-Khori, K.; Bicer, Y.; Boulfrad, S.; Koç, M. Techno-Economic and Environmental Assessment of Integrating SOFC with a Conventional Steam and Power System in a Natural Gas Processing Plant. Int. J. Hydrog. Energy 2019, 44, 29604–29617. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Sadeghzadeh, M.; Rahimi, A.; Pouriman, M. Technical Performance Analysis of a Combined Cooling Heating and Power (CCHP) System Based on Solid Oxide Fuel Cell (SOFC) Technology—A Building Application. Energy Convers. Manag. 2019, 198, 111767. [Google Scholar] [CrossRef]
- Singh, S.; Jha, P.A.; Presto, S.; Viviani, M.; Sinha, A.S.K.; Varma, S.; Singh, P. Structural and Electrical Conduction Behaviour of Yttrium Doped Strontium Titanate: Anode Material for SOFC Application. J. Alloys Compd. 2018, 748, 637–644. [Google Scholar] [CrossRef]
- Barelli, L.; Barluzzi, E.; Bidini, G. Diagnosis Methodology and Technique for Solid Oxide Fuel Cells: A Review. Int. J. Hydrog. Energy 2013, 38, 5060–5074. [Google Scholar] [CrossRef]
- van Biert, L.; Visser, K.; Aravind, P.V. A Comparison of Steam Reforming Concepts in Solid Oxide Fuel Cell Systems. Appl. Energy 2020, 264, 114748. [Google Scholar] [CrossRef]
- Dispenza, G.; Sergi, F.; Napoli, G.; Antonucci, V.; Andaloro, L. Evaluation of Hydrogen Production Cost in Different Real Case Studies. J. Energy Storage 2019, 24, 100757. [Google Scholar] [CrossRef]
- Saidi, M. Performance Assessment and Evaluation of Catalytic Membrane Reactor for Pure Hydrogen Production via Steam Reforming of Methanol. Int. J. Hydrog. Energy 2017, 42, 16170–16185. [Google Scholar] [CrossRef]
- Capa, A.; García, R.; Chen, D.; Rubiera, F.; Pevida, C.; Gil, M.V. On the Effect of Biogas Composition on the H2 Production by Sorption Enhanced Steam Reforming (SESR). Renew. Energy 2020, 160, 575–583. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, H.; Liu, H. Study of Partial Oxidation Reforming of Methane to Syngas over Self-Sustained Electrochemical Promotion Catalyst. Int. J. Hydrog. Energy 2013, 38, 6391–6396. [Google Scholar] [CrossRef]
- Cao, L.; Yu, I.K.M.; Xiong, X.; Tsang, D.C.W.; Zhang, S.; Clark, J.H.; Hu, C.; Ng, Y.H.; Shang, J.; Ok, Y.S. Biorenewable Hydrogen Production through Biomass Gasification: A Review and Future Prospects. Environ. Res. 2020, 186, 109547. [Google Scholar] [CrossRef] [PubMed]
- Mastropasqua, L.; Pecenati, I.; Giostri, A.; Campanari, S. Solar Hydrogen Production: Techno-Economic Analysis of a Parabolic Dish-Supported High-Temperature Electrolysis System. Appl. Energy 2020, 261, 114392. [Google Scholar] [CrossRef]
- Ru, Y.; Sang, J.; Xia, C.; Wei, W.-C.J.; Guan, W. Durability of Direct Internal Reforming of Methanol as Fuel for Solid Oxide Fuel Cell with Double-Sided Cathodes. Int. J. Hydrog. Energy 2020, 45, 7069–7076. [Google Scholar] [CrossRef]
- Schluckner, C.; Subotić, V.; Lawlor, V.; Hochenauer, C. Three-Dimensional Numerical and Experimental Investigation of an Industrial-Sized SOFC Fueled by Diesel Reformat—Part II: Detailed Reforming Chemistry and Carbon Deposition Analysis. Int. J. Hydrog. Energy 2015, 40, 10943–10959. [Google Scholar] [CrossRef]
- Lanzini, A.; Leone, P. Experimental Investigation of Direct Internal Reforming of Biogas in Solid Oxide Fuel Cells. Int. J. Hydrog. Energy 2010, 35, 2463–2476. [Google Scholar] [CrossRef]
- Bao, C.; Wang, Y.; Feng, D.; Jiang, Z.; Zhang, X. Macroscopic Modeling of Solid Oxide Fuel Cell (SOFC) and Model-Based Control of SOFC and Gas Turbine Hybrid System. Prog. Energy Combust. Sci. 2018, 66, 83–140. [Google Scholar] [CrossRef]
- Ahmed, K.; Foger, K. Kinetics of Internal Steam Reforming of Methane on Ni/YSZ-Based Anodes for Solid Oxide Fuel Cells. Catal. Today 2000, 63, 479–487. [Google Scholar] [CrossRef]
- Luo, X.J.; Fong, K.F. Development of 2D Dynamic Model for Hydrogen-Fed and Methane-Fed Solid Oxide Fuel Cells. J. Power Sources 2016, 328, 91–104. [Google Scholar] [CrossRef]
- Sohn, S.; Baek, S.M.; Nam, J.H.; Kim, C.-J. Two-Dimensional Micro/Macroscale Model for Intermediate-Temperature Solid Oxide Fuel Cells Considering the Direct Internal Reforming of Methane. Int. J. Hydrog. Energy 2016, 41, 5582–5597. [Google Scholar] [CrossRef]
- Chiang, L.-K.; Liu, H.-C.; Shiu, Y.-H.; Lee, C.-H.; Lee, R.-Y. Thermal Stress and Thermo-Electrochemical Analysis of a Planar Anode-Supported Solid Oxide Fuel Cell: Effects of Anode Porosity. J. Power Sources 2010, 195, 1895–1904. [Google Scholar] [CrossRef]
- Greco, F.; Frandsen, H.L.; Nakajo, A.; Madsen, M.F.; Van herle, J. Modelling the Impact of Creep on the Probability of Failure of a Solid Oxide Fuel Cell Stack. J. Eur. Ceram. Soc. 2014, 34, 2695–2704. [Google Scholar] [CrossRef]
- Mogensen, D.; Grunwaldt, J.-D.; Hendriksen, P.V.; Dam-Johansen, K.; Nielsen, J.U. Internal Steam Reforming in Solid Oxide Fuel Cells: Status and Opportunities of Kinetic Studies and Their Impact on Modelling. J. Power Sources 2011, 196, 25–38. [Google Scholar] [CrossRef]
- Aguiar, P.; Adjiman, C.S.; Brandon, N.P. Anode-Supported Intermediate Temperature Direct Internal Reforming Solid Oxide Fuel Cell. I: Model-Based Steady-State Performance. J. Power Sources 2004, 138, 120–136. [Google Scholar] [CrossRef]
- Papurello, D.; Lanzini, A. SOFC Single Cells Fed by Biogas: Experimental Tests with Trace Contaminants. Waste Manag. 2018, 72, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Madi, H.; Lanzini, A.; Diethelm, S.; Papurello, D.; Van herle, J.; Lualdi, M.; Gutzon Larsen, J.; Santarelli, M. Solid Oxide Fuel Cell Anode Degradation by the Effect of Siloxanes. J. Power Sources 2015, 279, 460–471. [Google Scholar] [CrossRef]
- Lee, H.S.; Lee, H.M.; Park, J.-Y.; Lim, H.-T. Degradation Behavior of Ni-YSZ Anode-Supported Solid Oxide Fuel Cell (SOFC) as a Function of H2S Concentration. Int. J. Hydrog. Energy 2018, 43, 22511–22518. [Google Scholar] [CrossRef]
- Vorontsov, V.; Luo, J.L.; Sanger, A.R.; Chuang, K.T. Synthesis and Characterization of New Ternary Transition Metal Sulfide Anodes for H2S-Powered Solid Oxide Fuel Cell. J. Power Sources 2008, 183, 76–83. [Google Scholar] [CrossRef]
- Badur, J.; Lemański, M.; Kowalczyk, T.; Ziółkowski, P.; Kornet, S. Zero-Dimensional Robust Model of an SOFC with Internal Reforming for Hybrid Energy Cycles. Energy 2018, 158, 128–138. [Google Scholar] [CrossRef]
- Hou, Q.; Zhao, H.; Yang, X. Thermodynamic Performance Study of the Integrated MR-SOFC-CCHP System. Energy 2018, 150, 434–450. [Google Scholar] [CrossRef]
- Menon, V.; Banerjee, A.; Dailly, J.; Deutschmann, O. Numerical Analysis of Mass and Heat Transport in Proton-Conducting SOFCs with Direct Internal Reforming. Appl. Energy 2015, 149, 161–175. [Google Scholar] [CrossRef]
- Andersson, M.; Yuan, J.; Sundén, B. SOFC Modeling Considering Hydrogen and Carbon Monoxide as Electrochemical Reactants. J. Power Sources 2013, 232, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Chalusiak, M.; Wrobel, M.; Mozdzierz, M.; Berent, K.; Szmyd, J.S.; Kimijima, S.; Brus, G. A Numerical Analysis of Unsteady Transport Phenomena in a Direct Internal Reforming Solid Oxide Fuel Cell. Int. J. Heat Mass Transf. 2019, 131, 1032–1051. [Google Scholar] [CrossRef]
- Li, J.; Cao, G.-Y.; Zhu, X.-J.; Tu, H.-Y. Two-Dimensional Dynamic Simulation of a Direct Internal Reforming Solid Oxide Fuel Cell. J. Power Sources 2007, 171, 585–600. [Google Scholar] [CrossRef]
- Ho, T.X.; Kosinski, P.; Hoffmann, A.C.; Vik, A. Transport, Chemical and Electrochemical Processes in a Planar Solid Oxide Fuel Cell: Detailed Three-Dimensional Modeling. J. Power Sources 2010, 195, 6764–6773. [Google Scholar] [CrossRef]
- Nikooyeh, K.; Jeje, A.A.; Hill, J.M. 3D Modeling of Anode-Supported Planar SOFC with Internal Reforming of Methane. J. Power Sources 2007, 171, 601–609. [Google Scholar] [CrossRef]
- Lanzini, A.; Leone, P.; Pieroni, M.; Santarelli, M.; Beretta, D.; Ginocchio, S. Experimental Investigations and Modeling of Direct Internal Reforming of Biogases in Tubular Solid Oxide Fuel Cells. Fuel Cells 2011, 11, 697–710. [Google Scholar] [CrossRef]
- Stoeckl, B.; Subotić, V.; Reichholf, D.; Schroettner, H.; Hochenauer, C. Extensive Analysis of Large Planar SOFC: Operation with Humidified Methane and Carbon Monoxide to Examine Carbon Deposition Based Degradation. Electrochim. Acta 2017, 256, 325–336. [Google Scholar] [CrossRef]
- Fang, Q.; Blum, L.; Batfalsky, P.; Menzler, N.H.; Packbier, U.; Stolten, D. Durability Test and Degradation Behavior of a 2.5 KW SOFC Stack with Internal Reforming of LNG. Int. J. Hydrog. Energy 2013, 38, 16344–16353. [Google Scholar] [CrossRef]
- Subotić, V.; Schluckner, C.; Stoeckl, B.; Preininger, M.; Lawlor, V.; Pofahl, S.; Schroettner, H.; Hochenauer, C. Towards Practicable Methods for Carbon Removal from Ni-YSZ Anodes and Restoring the Performance of Commercial-Sized ASC-SOFCs after Carbon Deposition Induced Degradation. Energy Convers. Manag. 2018, 178, 343–354. [Google Scholar] [CrossRef]
- Klein, J.-M.; Bultel, Y.; Pons, M.; Ozil, P. Modeling of a Solid Oxide Fuel Cell Fueled by Methane: Analysis of Carbon Deposition. J. Fuel Cell Sci. Technol. 2007, 4, 425–434. [Google Scholar] [CrossRef]
- Yan, M.; Zeng, M.; Chen, Q.; Wang, Q. Numerical Study on Carbon Deposition of SOFC with Unsteady State Variation of Porosity. Appl. Energy 2012, 97, 754–762. [Google Scholar] [CrossRef]
- Conti, B.; Bosio, B.; McPhail, S.J.; Santoni, F.; Pumiglia, D.; Arato, E. A 2-D Model for Intermediate Temperature Solid Oxide Fuel Cells Preliminarily Validated on Local Values. Catalysts 2019, 9, 36. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, F.R.; Spotorno, R.; Piccardo, P.; Bosio, B. Solid Oxide Fuel Cell Performance Analysis Through Local Modelling. Catalysts 2020, 10, 519. [Google Scholar] [CrossRef]
- Kazempoor, P.; Braun, R.J. Model Validation and Performance Analysis of Regenerative Solid Oxide Cells for Energy Storage Applications: Reversible Operation. Int. J. Hydrog. Energy 2014, 39, 5955–5971. [Google Scholar] [CrossRef]
- Timmermann, H.; Sawady, W.; Reimert, R.; Ivers-Tiffée, E. Kinetics of (Reversible) Internal Reforming of Methane in Solid Oxide Fuel Cells under Stationary and APU Conditions. J. Power Sources 2010, 195, 214–222. [Google Scholar] [CrossRef]
- Bianchi, F.R.; Bosio, B.; Baldinelli, A.; Barelli, L. Optimization of a Reference Kinetic Model for Solid Oxide Fuel Cells. Catalysts 2020, 10, 104. [Google Scholar] [CrossRef] [Green Version]
- Audasso, E.; Nam, S.; Arato, E.; Bosio, B. Preliminary Model and Validation of Molten Carbonate Fuel Cell Kinetics under Sulphur Poisoning. J. Power Sources 2017, 352, 216–225. [Google Scholar] [CrossRef]
- Sanchez, D.; Chacartegui, R.; Munoz, A.; Sanchez, T. On the Effect of Methane Internal Reforming Modelling in Solid Oxide Fuel Cells. Int. J. Hydrog. Energy 2008, 33, 1834–1844. [Google Scholar] [CrossRef]
- Green, D.W.; Perry, R.H. Perry’s Chemical Engineers’ Handbook, 8th ed.; McGraw-Hill Education: New York, NY, USA, 2007. [Google Scholar]
- Xu, J.; Froment, G.F. Methane Steam Reforming, Methanation and Water-Gas Shift: I. Intrinsic Kinetics. AIChE J. 1989, 35, 88–96. [Google Scholar] [CrossRef]
- Nagel, F.P.; Schildhauer, T.J.; Biollaz, S.M.A.; Stucki, S. Charge, Mass and Heat Transfer Interactions in Solid Oxide Fuel Cells Operated with Different Fuel Gases—A Sensitivity Analysis. J. Power Sources 2008, 184, 129–142. [Google Scholar] [CrossRef]
- van Biert, L.; Visser, K.; Aravind, P.V. Intrinsic Methane Steam Reforming Kinetics on Nickel-Ceria Solid Oxide Fuel Cell Anodes. J. Power Sources 2019, 443, 227261. [Google Scholar] [CrossRef]
- Achenbach, E.; Riensche, E. Methane/Steam Reforming Kinetics for Solid Oxide Fuel Cells. J. Power Sources 1994, 52, 283–288. [Google Scholar] [CrossRef]
- Audasso, E.; Bosio, B.; Bove, D.; Arato, E.; Barckholtz, T.; Kiss, G.; Rosen, J.; Elsen, H.; Gutierrez, R.B.; Han, L.; et al. New, Dual-Anion Mechanism for Molten Carbonate Fuel Cells Working as Carbon Capture Devices. J. Electrochem. Soc. 2020, 167, 084504. [Google Scholar] [CrossRef]
- Irshad, M.; Siraj, K.; Raza, R.; Ali, A.; Tiwari, P.; Zhu, B.; Rafique, A.; Ali, A.; Kaleem Ullah, M.; Usman, A. A Brief Description of High Temperature Solid Oxide Fuel Cell’s Operation, Materials, Design, Fabrication Technologies and Performance. Appl. Sci. 2016, 6, 75. [Google Scholar] [CrossRef] [Green Version]
- da Silva, F.S.; de Souza, T.M. Novel Materials for Solid Oxide Fuel Cell Technologies: A Literature Review. Int. J. Hydrog. Energy 2017, 42, 26020–26036. [Google Scholar] [CrossRef] [Green Version]
- McPhail, S.J.; Kiviaho, J.; Conti, B. The Yellow Pages of SOFC Technology International Status of SOFC Deployment 2017. VTT Technical Research Centre of Finland Ltd.: Espoo, Finland, 2017. [Google Scholar]
- Chen, T.; Wang, W.G.; Miao, H.; Li, T.; Xu, C. Evaluation of Carbon Deposition Behavior on the Nickel/Yttrium-Stabilized Zirconia Anode-Supported Fuel Cell Fueled with Simulated Syngas. J. Power Sources 2011, 196, 2461–2468. [Google Scholar] [CrossRef]
- Ahmed, K.; Föger, K. Analysis of Equilibrium and Kinetic Models of Internal Reforming on Solid Oxide Fuel Cell Anodes: Effect on Voltage, Current and Temperature Distribution. J. Power Sources 2017, 343, 83–93. [Google Scholar] [CrossRef]
- Jiang, C.; Gu, Y.; Guan, W.; Zheng, J.; Ni, M.; Zhong, Z. 3D Thermo-Electro-Chemo-Mechanical Coupled Modeling of Solid Oxide Fuel Cell with Double-Sided Cathodes. Int. J. Hydrog. Energy 2020, 45, 904–915. [Google Scholar] [CrossRef]
Kinetics Parameter | Value |
---|---|
kSR [mol m−2 s−1 bar−1] | 4274 |
Eatt,SR [J mol−1] | 82,000 |
Cell voltage | |
OCV potential | |
Anodic exchange current density | |
Cathodic exchange current density | |
Electrochemical parameters | ηleakage = 0.03, P1 = 2 × 10−9 [Ω cm2 K−1], P2 = 10,986 [K], P3 = 2.8 × 105 [A cm−2], P4 = 4 × 106 [A cm−2], Eact,an = 110 [kJ mol−1], Eact,cat = 120 [kJ mol−1], A = 0.5, B = 0.55, C = 0.25 |
Property | Anode Ni/YSZ | Electrolyte YSZ | Cathode LSC |
---|---|---|---|
Density [g cm−3] | 7.7 | 6.0 | 5.3 |
Heat Capacity [cal mol−1 K−1] | 50 | 29 | 34 |
Porosity [-] | 0.40 | 0.01 | 0.35 |
Thickness [μm] | 350 | 5 | 30 |
Tortuosity [-] | 4 | - | n.a. |
Inlet Condition | Anode | Cathode |
---|---|---|
T [K] | 1023 | 1023 |
N [Nm3 h−1] | 0.75 | 8.60 |
yCH4 [-] | 0.25 | - |
yH2 [-] | 0.04 | - |
yH2O [-] | 0.51 | - |
yCO2 [-] | 0.13 | - |
yCO [-] | 0.03 | - |
yN2 [-] | 0.04 | 0.79 |
yO2 [-] | - | 0.21 |
Reforming Operating Condition | Equilibrium | Kinetics |
---|---|---|
V [V] | 0.747 | 0.856 |
Jmax [A cm−2] | 0.88 | 0.42 |
Tmax [K] | 1110 | 1084 |
Tmin [K] | 873 | 828 |
Taverage [K] | 1037 | 1034 |
yCH4,max [-] | 0.048 | 0.196 |
yH2,max [-] | 0.402 | 0.525 |
Cell Power [W] | 1121 | 1284 |
Reforming Operating Condition | Degradation |
---|---|
V [V] | 0.823 |
Jmax [A cm−2] | 0.47 |
Tmax [K] | 1088 |
Tmin [K] | 962 |
Taverage [K] | 1034 |
yCH4,max [-] | 0.250 |
yH2,max [-] | 0.373 |
Cell Power [W] | 1234 |
Reforming Operating Condition | Optimized Configuration |
---|---|
V [V] | 0.847 |
Jmax [A cm−2] | 0.29 |
Tmax [K] | 1059 |
Tmin [K] | 963 |
Taverage [K] | 1034 |
yCH4,max [-] | 0.233 |
yH2,max [-] | 0.322 |
Cell Power [W] | 1270 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Audasso, E.; Bianchi, F.R.; Bosio, B. 2D Simulation for CH4 Internal Reforming-SOFCs: An Approach to Study Performance Degradation and Optimization. Energies 2020, 13, 4116. https://doi.org/10.3390/en13164116
Audasso E, Bianchi FR, Bosio B. 2D Simulation for CH4 Internal Reforming-SOFCs: An Approach to Study Performance Degradation and Optimization. Energies. 2020; 13(16):4116. https://doi.org/10.3390/en13164116
Chicago/Turabian StyleAudasso, Emilio, Fiammetta Rita Bianchi, and Barbara Bosio. 2020. "2D Simulation for CH4 Internal Reforming-SOFCs: An Approach to Study Performance Degradation and Optimization" Energies 13, no. 16: 4116. https://doi.org/10.3390/en13164116
APA StyleAudasso, E., Bianchi, F. R., & Bosio, B. (2020). 2D Simulation for CH4 Internal Reforming-SOFCs: An Approach to Study Performance Degradation and Optimization. Energies, 13(16), 4116. https://doi.org/10.3390/en13164116