Ce0.9Gd0.1O2−x for Intermediate Temperature Solid Oxide Fuel Cells: Influence of Cathode Thickness and Anode Functional Layer on Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Starting Materials
2.2. Slurry Formation for Tape Casting Process
2.3. Tape Casting and Sintering Process
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Minh, N.Q. Ceramic Fuel Cells. J. Am. Ceram. Soc. 1993, 76, 563–588. [Google Scholar] [CrossRef]
- Brett, D.J.L.; Atkinson, A.; Brandon, N.P.; Skinner, S.J. Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 2008, 37, 1568–1578. [Google Scholar] [CrossRef]
- Saeba, D.; Authayanum, S.; Patcharavorachot, Y.; Chatrattanawet, N.; Arpornwichanop, A. Electrochemical performance assessment of low-temperature solid oxide fuel cell with YSZ-based and SDC-based electrolytes. Int. J. Hydrog. Energy 2018, 43, 921–931. [Google Scholar] [CrossRef]
- Steele, B.C.H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352. [Google Scholar] [CrossRef]
- Kharton, V.V.; Figueiredo, F.M.; Navarro, L.; Naumovich, E.N.; Kovalevsky, A.V.; Yaremchenko, A.A.; Viskup, A.P.; Carneiro, A.; Marques, F.M.B.; Frade, J.R. Ceria-based materials for solid oxide fuel cells. J. Mater. Sci. 2001, 36, 1105–1117. [Google Scholar] [CrossRef]
- Wandekar, R.V.; Basu, M.A.; Wani, B.N.; Bharadwaj, S.R. Physicochemical studies of NiO–GDC composites. Mater. Chem. Phys. 2006, 99, 289–294. [Google Scholar] [CrossRef]
- Prokop, T.A.; Berent, K.; Iwai, H.; Szmyd, J.S.; Brus, G. A three-dimensional heterogeneity analysis of electrochemical energy conversion in SOFC anodes using electron nanotomography and mathematical modeling. Int. J. Hydrog. Energy 2018, 43, 10016–10030. [Google Scholar] [CrossRef]
- Murray, E.P.; Barnett, S.A. (La,Sr)MnO3–(Ce,Gd)O2−x composite cathodes for solid oxide fuel cells. Solid State Ion. 2001, 143, 265–273. [Google Scholar] [CrossRef]
- Lee, S.J.; Muralidharan, P.; Jo, S.H.; Kim, D.K. Composite cathode for IT-SOFC: Sr-doped lanthanum cuprate and Gd-doped ceria. Electrochem. Comm. 2010, 12, 808–811. [Google Scholar] [CrossRef]
- Leng, Y.J.; Chan, S.H.; Khor, K.A.; Jiang, S.P. (La0.8Sr0.2)0.9MnO3-Gd0.2Ce0.8O1.9 composite cathodes prepared from (Gd,Ce)(NO3)x -modified (La0.8Sr0.2)0.9MnO3 for intermediate-temperature solid oxide fuel cells. J. Solid State Electrochem. 2006, 10, 339–347. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, N.; Qiao, J.; Sun, K.; Xu, P. Improved SOFC performance with continuously graded anode functional layer. Electrochem. Commun. 2009, 11, 1120–1123. [Google Scholar] [CrossRef]
- Sivasankaran, V.; Combemale, L.; Pera, M.-C.; Caboche, G. Initial Preparation and Characterization of Single Step Fabricated Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFC). Fuel Cells 2014, 14, 533–536. [Google Scholar] [CrossRef]
- Sivasankaran, V. Manufacturing and Characterization of Single Cell Intermediate Temperature Solid Oxide Fuel Cells for APU in Transportation Application. Ph.D. Thesis, University of Burgundy, Dijon, France, July 2014. [Google Scholar]
- Sivasankaran, V.; Combemale, L.; Caboche, G. Method of Preparing a Fuel Cell. WO2014057218A2, 9 September 2013. PCT/FR2013/052408 World Patent. [Google Scholar]
- Raju, K.; Kim, S.; Hyung, C.J.; Yu, J.H.; Seong, Y.-H.; Kim, S.-H.; Han, I.-S. Optimal sintering temperature for Ce0.9Gd0.1O2−δ–La0.6Sr0.4Co0.2Fe0.8O3–δ composites evaluated through their microstructural, mechanical and elastic properties. Ceram. Int. 2019, 45, 1460–1463. [Google Scholar] [CrossRef]
- Li, J.; Lv, T.; Dong, X.; Yu, J.; Yu, B.; Li, P.; Yao, X.; Zhao, Y.; Li, Y. Linear discharge model, power losses and overall efficiency of solid oxide fuel cell with thin film Sm doped ceria electrolyte. Part II: Power losses overall efficiency. Int. J. Hydrog. Energy 2017, 42, 17522–17527. [Google Scholar] [CrossRef]
- Chiodelli, G.; Malavasi, L. Electrochemical open circuit voltage (OCV) characterization of SOFC materials. Ionics 2013, 19, 1135–1144. [Google Scholar] [CrossRef]
- Sindiraç, C.; Büyükaksoy, A.; Akkurt, S. Electrical properties of gadolinia doped ceria electrolytes fabricated by infiltration aided sintering. Solid State Ion. 2019, 340, 115020–115028. [Google Scholar] [CrossRef]
- Lubini, M.; Chinarro, E.; Moreno, B.; De Sousa, V.C.; Alves, A.K.; Bergmann, C.P. Electrical properties of La0.6Sr0.4Co1-yFeyO3 (y = 0.2–1.0) fibers obtained by electrospinning. J. Phys. Chem. 2016, 120, 64–69. [Google Scholar] [CrossRef]
- Bianchi, F.R.; Bosio, B.; Baldinelli, A.; Barelli, L. Optimisation of a reference kinetic model for Solid Oxide Fuel Cells. Catalysts 2020, 10, 104. [Google Scholar] [CrossRef] [Green Version]
- Hauch, A.; Mogensen, M.B. Testing of Electrodes, Cells, and Short Stacks. In Advances in Medium and High Temperature Solid Oxide Fuel Cell Technology; CISM International Centre for Mechanical Sciences: Udine, Italy, 2009; Volume 574, pp. 31–76. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Wang, W.G.; Miao, H.; Chen, T.; Xu, C. Effect of reduction temperature on the electrochemical properties of a Ni/YSZ anode-supported solid oxide fuel cell. J. Alloys Compd. 2010, 495, 138–143. [Google Scholar] [CrossRef]
- Zhen, Y.D.; Tok, A.I.Y.; Jiang, S.P.; Boey, F.Y.C. Fabrication and performance of gadolinia-doped ceria-based intermediate-temperature solid oxide fuel cells. J. Power Sourc. 2008, 178, 69–74. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Shimizu, S.; Suzuki, T.; Fujishiro, Y.; Awano, M. Fabrication and characterization of high performance cathode supported small-scale SOFC for intermediate temperature operation. Electrochem. Comm. 2008, 10, 1381–1383. [Google Scholar] [CrossRef]
- Ding, C.; Lin, H.; Sato, K.; Hashida, T. A simple rapid spray method for preparing anode-supported solid oxide fuel cells with GDC electrolyte thin films. J. Membr. Sci. 2010, 350, 1–4. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, X.M.; Bergman, B.; Zhao, Z. Investigation of oxygen reduction reaction kinetics on Sm0.5Sr0.5CoO3−δ cathode supported on Ce0.85Sm0.075Nd0.075O2−δ electrolyte. J. Power Sourc. 2011, 196, 9195–9203. [Google Scholar] [CrossRef]
- Han, D.; Wu, H.; Li, J.L.; Wang, S.R.; Zhan, Z.L. Nanostructuring of SmBa0.5Sr0.5Co2O5+δ cathodes for reduced-temperature solid oxide fuel cells. J. Power Sourc. 2014, 246, 409–416. [Google Scholar] [CrossRef]
- Horita, T.; Yamaji, K.; Sakai, N.; Yokokawa, H.; Weber, A.; Ivers-Tiffée, E. Oxygen reduction mechanism at porous La1−xSrxCoO3−d cathodes/La0.8Sr0.2Ga0.8Mg0.2O2.8 electrolyte interface for solid oxide fuel cells. Electrochim. Acta 2001, 46, 1837–1845. [Google Scholar] [CrossRef]
- Li, W.; Shi, Y.; Luo, Y.; Cai, N. Theoretical modeling of air electrode operating in SOFC mode and SOEC mode: The effects of microstructure and thickness. Int. J. Hydrog. Energy 2014, 39, 13738–13750. [Google Scholar] [CrossRef]
- Bi, L.; Fabbri, E.; Traversa, E. Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs). Electrochem. Commun. 2012, 16, 37–40. [Google Scholar] [CrossRef]
- Suzuki, T.; Sugihara, S.; Yamaguchi, T.; Sumi, H.; Hamamoto, K.; Fujishiro, Y. Effect of anode functional layer on energy efficiency of solid oxide fuel cells. Electrochem. Commun. 2011, 13, 959–962. [Google Scholar] [CrossRef]
Cathode Active Area (cm2) | Thicknesses (µm) | ||||
---|---|---|---|---|---|
Cathode | Electrolyte | Anode Functional Layer | Anode | ||
Sample 1 | 10 | 9 | 15 | 18 | 242 |
Sample 2 | 10 | 43 | 37 | 33 | 245 |
Sample 3 | 10 | 48 | 21 | 29 | 249 |
Sample 4 | 10 | 50 | 20 | - | 270 |
Operating Temperature (°C) | σel, Ionic Conductivity of the Electrolyte (S·cm−1) [18] | σcat, Electrical Conductivity of the Cathode (S·cm−1) [19] | σan, Electrical Conductivity of the Anode (S·cm−1) [3] |
---|---|---|---|
500 | 1.32 × 10−3 | 1.25 | 115 |
550 | 2.18 × 10−3 | 1.37 | 119 |
600 | 3.39 × 10−3 | 1.56 | 122 |
650 | 5.04 × 10−3 | 1.75 | 124 |
Operating Temperature (°C) | Resistance of the Electrolyte (Ω) | Resistance of the Cathode (Ω) | Resistance of the Anode (Ω) | Rohm Internal Resistance (Ω) | ηohm Ohmic Overpotential (V) | |
---|---|---|---|---|---|---|
Sample 1 | 500 | 1.14 | 7.20 × 10−4 | 2.35 × 10−4 | 1.14 | 0.228 |
550 | 6.88 × 10−1 | 6.57 × 10−4 | 2.27 × 10−4 | 6.89 × 10−1 | 0.138 | |
600 | 4.42 × 10−1 | 5.77 × 10−4 | 2.22 × 10−4 | 4.43 × 10−1 | 0.089 | |
650 | 2.98 × 10−1 | 5.14 × 10−4 | 2.18 × 10−4 | 2.98 × 10−1 | 0.060 | |
Sample 2 | 500 | 2.80 | 3.44 × 10−3 | 2.42 × 10−4 | 2.81 | n.d. |
550 | 1.70 | 3.14 × 10−3 | 2.34 × 10−4 | 1.70 | n.d. | |
600 | 1.09 | 2.76 × 10−3 | 2.28 × 10−4 | 1.09 | n.d. | |
650 | 7.34 × 10−1 | 2.46 × 10−3 | 2.24 × 10−4 | 7.37 × 10−1 | n.d. | |
Sample 3 | 500 | 1.59 | 3.84 × 10−3 | 2.42 × 10−4 | 1.59 | n.d. |
550 | 9.63 × 10−1 | 3.50 × 10−3 | 2.34 × 10−4 | 9.67 × 10−1 | 0.193 | |
600 | 6.19 × 10−1 | 3.08 × 10−3 | 2.28 × 10−4 | 6.23 × 10−1 | 0.125 | |
650 | 4.17 × 10−1 | 2.74 × 10−3 | 2.24 × 10−4 | 4.20 × 10−1 | 0.084 | |
Sample 4 | 500 | 1.52 | 4.00 × 10−3 | 2.35 × 10−4 | 1.52 | 0.304 |
550 | 9.17 × 10−1 | 3.65 × 10−3 | 2.27 × 10−4 | 9.21 × 10−1 | 0.184 | |
600 | 5.90 × 10−1 | 3.21 × 10−3 | 2.22 × 10−4 | 5.93 × 10−1 | 0.119 | |
650 | 3.97 × 10−1 | 2.86 × 10−3 | 2.18 × 10−4 | 4.00 × 10−1 | 0.080 |
Operating Temperature (°C) | Pmax (mW·cm−2) | OCV (mV) | ASR (Ω·cm2) | lnσ (S·cm−1) | Activation Energy Ea (eV) | |
---|---|---|---|---|---|---|
Sample 1 | 500 | 23.5 | 920 | 8.13 | −8.60 | 0.70 |
550 | 38.5 | 862 | 3.89 | −7.86 | ||
600 | 47 | 785 | 2.44 | −7.39 | ||
650 | 31.5 | 667 | n.d. | n.d. | ||
Sample 2 | 500 | 150 | 880 | 1.26 | −5.83 | 0.43 |
550 | 190 | 820 | 0.80 | −5.38 | ||
600 | 110 | 725 | 0.61 | −5.10 | ||
650 | 110 | 618 | n.d. | n.d. | ||
Sample 3 | 500 | 82 | 950 | 2.72 | −7.17 | 0.63 |
550 | 121 | 914 | 1.78 | −6.74 | ||
600 | 176 | 880 | 1.08 | −6.24 | ||
650 | 225 | 800 | 0.66 | −5.75 | ||
Sample 4 | 500 | 145 | 950 | 1.73 | −6.76 | 0.58 |
550 | 226 | 905 | 0.92 | −6.13 | ||
600 | 307 | 875 | 0.60 | −5.70 | ||
650 | 366 | 800 | 0.36 | −5.19 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivasankaran, V.; Combemale, L.; François, M.; Caboche, G. Ce0.9Gd0.1O2−x for Intermediate Temperature Solid Oxide Fuel Cells: Influence of Cathode Thickness and Anode Functional Layer on Performance. Energies 2020, 13, 4400. https://doi.org/10.3390/en13174400
Sivasankaran V, Combemale L, François M, Caboche G. Ce0.9Gd0.1O2−x for Intermediate Temperature Solid Oxide Fuel Cells: Influence of Cathode Thickness and Anode Functional Layer on Performance. Energies. 2020; 13(17):4400. https://doi.org/10.3390/en13174400
Chicago/Turabian StyleSivasankaran, Visweshwar, Lionel Combemale, Mélanie François, and Gilles Caboche. 2020. "Ce0.9Gd0.1O2−x for Intermediate Temperature Solid Oxide Fuel Cells: Influence of Cathode Thickness and Anode Functional Layer on Performance" Energies 13, no. 17: 4400. https://doi.org/10.3390/en13174400
APA StyleSivasankaran, V., Combemale, L., François, M., & Caboche, G. (2020). Ce0.9Gd0.1O2−x for Intermediate Temperature Solid Oxide Fuel Cells: Influence of Cathode Thickness and Anode Functional Layer on Performance. Energies, 13(17), 4400. https://doi.org/10.3390/en13174400