A Novel Multilevel DC-Link Three-Phase T-Type Inverter
Abstract
:1. Introduction
2. The Proposed 4LT2C Converter
2.1. The Proposed Converter Topology and Model
2.2. Modulation Technique and Operating Principle
2.3. The Proposed Commutation Strategy and Extended Structure
3. Simulation Results and Analysis
3.1. Operating Waveforms of the Proposed 4LT2C
3.2. Voltage Transition and Switching Energy Loss of the Proposed 4LT2C and the N-Level Inverter in
3.3. Efficiency Analysis of the Proposed 4LT2C and the N-Level Inverter in [2]
3.4. Comparison of Component and Ratings of the Proposed 4LT2C with Other Multilevel Topologies
4. The 4LT2C Prototype and Experimental Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
4LT2C | Four-level T-type converter |
D1~D6, Da1~Dc2, Dz1~Dz4 | Inverter diodes |
VSC | Voltage source converter |
Eon | Turn-on losses |
Eoff | Turn-off losses |
Vce | The block-voltage or reverse-voltage |
Pcond_IGBT | Power conduction losses of the IGBT |
Pcond_diode | Power conduction losses of the diode |
Psw | The power switching losses |
fsw | The operation switching frequency of switch |
g | The inverter ground |
Q1~Q6 | Switches of the main bridge |
T1~T4 | Switches of DC-link |
G(Q1)~G(Q6) | Switching gate signals |
G(T1)~G(T4) | |
G(S1)~G(S6) | |
Ia, Ib, Ic, Iab | Load currents |
Ma | Amplitude of the modulation index |
N | Number of output voltage levels |
Sa, Sb, Sc | Inverter switching states |
Vdc | Voltage step value |
Vref | Reference voltage vector |
Vd | d-voltage component |
Vq | q-voltage component |
Vp | Voltage peak amplitude |
Vag, Vbg, Vcg | Line-to-ground output voltages |
Van, Vbn, Vcn | Inverter line-to-neutral voltages |
Von_IGBT | Forward voltage drops in IGBT |
Von_diode | Forward voltage drops in Diode |
References
- Kouro, S.; Malinowski, M.; Gopakumar, K.; Pou, J.; Franquelo, L.G.; Wu, B.; Rodriguez, J.; Pérez, M.A.; Leon, J.I. Recent advances and industrial applications of multilevel converters. IEEE Trans. Ind. Electron. 2010, 57, 2553–2580. [Google Scholar] [CrossRef]
- Masaoud, A.; Ping, H.W.; Mekhilef, S.; Taallah, A.; Belkamel, H. Design and Implementation of a new multilevel DC-Link three-phase inverter. J. Power Electron. 2014, 14, 292–301. [Google Scholar] [CrossRef] [Green Version]
- Glauber de Almeida Cacau, R.; Torrico-Bascope, R.P.; Aberides Ferreira Neto, J.; Torrico-Bascope, G.V. Five-Level T-Type Inverter Based on Multistate Switching Cell. IEEE Trans. Ind. Appl. 2014, 50, 3857–3866. [Google Scholar] [CrossRef]
- Dos Santos, E.C.; Muniz, J.H.; da Silva, E.R.; Jacobina, C.B. Nested multilevel topologies. IEEE Trans. Power Electron. 2015, 30, 4058–4068. [Google Scholar] [CrossRef]
- Peng, F.Z.; Qian, W.; Cao, D. Recent advances in multilevel converter/inverter topologies and applications. In Proceedings of the 2010 International Power Electronics Conference (IPEC), Sapporo, Japan, 21–24 June 2010. [Google Scholar]
- Masaoud, A.; Ping, H.W.; Mekhilef, S.; Taallah, A.S. New three-phase multilevel inverter with reduced number of power electronic components. IEEE Trans. Power Electron. 2014, 29, 6018–6029. [Google Scholar] [CrossRef]
- Belkamel, H.; Mekhilef, S.; Masaoud, A.; Naeim, M.A. Novel three-phase asymmetrical cascaded multilevel voltage source inverter. IET Power Electron. 2013, 6, 1696–1706. [Google Scholar] [CrossRef]
- Mekhilef, S.; Kadir, M.N.A. Voltage control of three-stage hybrid multilevel inverter using vector transformation. IEEE Trans. Power Electron. 2010, 25, 2599–2606. [Google Scholar] [CrossRef]
- Mei, J.; Xiao, B.; Shen, K.; Tolbert, L.M.; Zheng, J.Y. Modular multilevel inverter with new modulation method and its application to photovoltaic grid-connected generator. IEEE Trans. Power Electron. 2013, 28, 5063–5073. [Google Scholar] [CrossRef]
- Mariethoz, S. Systematic design of high-performance hybrid cascaded multilevel inverters with active voltage balance and minimum switching losses. IEEE Trans. Power Electron. 2013, 28, 3100–3113. [Google Scholar] [CrossRef]
- Babaei, E. A cascade multilevel converter topology with reduced number of switches. IEEE Trans. Power Electron. 2008, 23, 2657–2664. [Google Scholar] [CrossRef]
- Nami, A.; Zare, F.; Ghosh, A.; Blaabjerg, F. A hybrid cascade converter topology with series-connected symmetrical and asymmetrical diode-clamped H-bridge cells. IEEE Trans. Power Electron. 2011, 26, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Mathew, J.; Mathew, K.; Azeez, N.A.; Rajeevan, P.P.; Gopakumar, K. A Hybrid Multilevel Inverter System Based on Dodecagonal Space Vectors for Medium Voltage IM Drives. IEEE Trans. Power Electron. 2013, 28, 3723–3732. [Google Scholar] [CrossRef]
- Saeedifard, M.; Barbosa, P.M.; Steimer, P.K. Operation and control of a hybrid seven-level converter. IEEE Trans. Power Electron. 2012, 27, 652–660. [Google Scholar] [CrossRef]
- Park, S.-J.; Kang, F.-S.; Lee, M.H.; Kim, C.-U. A new single-phase five-level PWM inverter employing a deadbeat control scheme. IEEE Trans. Power Electron. 2003, 18, 831–843. [Google Scholar] [CrossRef]
- Klumpner, C.; Blaabjerg, F. Using reverse-blocking IGBTs in power converters for adjustable-speed drives. IEEE Trans. Ind. Appl. 2006, 42, 807–816. [Google Scholar] [CrossRef]
- Ping, H.W.; Rahim, N.A.; Jamaludin, J. New three-phase multilevel inverter with shared power switches. J. Power Electron. 2013, 13, 787–797. [Google Scholar] [CrossRef] [Green Version]
- Bohari, A.A.; Goh, H.H.; Tonni, A.K.; Lee, S.S.; Sim, S.Y.; Goh, K.C.; Lim, C.S.; Luo, Y.C. Predictive Direct Power Control for Dual-Active-Bridge Multilevel Inverter Based on Conservative Power Theory. Energies 2020, 13, 2951. [Google Scholar] [CrossRef]
- Rawa, M.; Siddique, M.D.; Mekhilef, S.; Mohamed Shah, N.; Bassi, H.; Seyedmahmoudian, M.; Horan, B.; Stojcevski, A. Design and implementation of a hybrid single T-type double H-bridge multilevel inverter (STDH-MLI) topology. Energies 2019, 12, 1810. [Google Scholar] [CrossRef] [Green Version]
- Abu-Rub, H.; Holtz, J.; Rodriguez, J.; Baoming, G. Medium-voltage multilevel converters—State of the art, challenges, and requirements in industrial applications. IEEE Trans. Ind. Electron. 2010, 57, 2581–2596. [Google Scholar] [CrossRef]
- Schweizer, M.; Kolar, J.W. Design and implementation of a highly efficient three-level T-type converter for low-voltage applications. IEEE Trans. Power Electron. 2013, 28, 899–907. [Google Scholar] [CrossRef]
- Holtz, J. Selbstgeführte Wechselrichter mit treppenförmiger Ausgangsspannung für grosse Leistung und hohe Frequenz. Siemens Forsch. Entwickl. 1977, 6, 164–171. [Google Scholar]
- Nabae, A.; Takahashi, I.; Akagi, H. A new neutral-point-clamped PWM inverter. IEEE Trans. Ind. Appl. 1981, 518–523. [Google Scholar] [CrossRef]
- Steinke, J. Grundlagen für die Entwicklung eines Steuerverfahrens für GTO-Dreipruktwechselrichter für Traktionsantriebe. ETZ-Archiv 1988, 10, 215–220. [Google Scholar]
- Joetten, R.; Gekeler, M.; Eibel, J. AC drive with three-level voltage source inverter and high dynamic performance microprocessor control. In Proceedings of the European Conference on Power Electronics and Applications, EPE, Brussels, Belguim, 16–18 October 1985. [Google Scholar]
- Fuld, B. Aufwandsarmer Thyristor-Dreistufen-Wechsebrichter mit geringen Verlusten. ETZ-Archiv 1989, 11, 261–265. [Google Scholar]
- Takeshita, T.; Matsui, N. PWM control and input characteristics of three-phase multi-level AC/DC converter. In Proceedings of the PESC’92 Record, 23rd Annual IEEE Power Electronics Specialists Conference, Toledo, Spain, 29 June–3 July 1992. [Google Scholar]
- Shueai Alnamer, S.; Mekhilef, S.; Bin Mokhlis, H.J.E. A Four-Level T-Type Neutral Point Piloted Inverter for Solar Energy Applications. Energies 2018, 11, 1546. [Google Scholar] [CrossRef] [Green Version]
- Brückner, T.; Bernet, S.; Güldner, H. The active NPC converter and its loss-balancing control. IEEE Trans. Ind. Electron. 2005, 52, 855–868. [Google Scholar] [CrossRef]
- Leredde, A.; Gateau, G.; Floricau, D. New three level topology with shared components: Properties, losses, and control strategy. In Proceedings of the 35th Annual Conference of IEEE Industrial Electronics (IECON’09), Porto, Portugal, 3–5 November 2009. [Google Scholar]
- Li, J.; Liu, J.; Boroyevich, D.; Mattavelli, P.; Xue, Y. Three-level active neutral-point-clamped zero-current-transition converter for sustainable energy systems. IEEE Trans. Power Electron. 2011, 26, 3680–3693. [Google Scholar] [CrossRef]
- Ewanchuk, J.; Salmon, J.; Knight, A.M. Performance of a high-speed motor drive system using a novel multilevel inverter topology. IEEE Trans. Ind. Appl. 2009, 45, 1706–1714. [Google Scholar] [CrossRef]
- Xiao, H.; Xie, S. Transformerless split-inductor neutral point clamped three-level PV grid-connected inverter. IEEE Trans. Power Electron. 2012, 27, 1799–1808. [Google Scholar] [CrossRef]
- Peron-Guennegues, V.; Conilh, C.; Leclere, L. A converter topology for high current density drive applications. In Proceedings of the 2011: 14th European Conference on Power Electronics and Applications (EPE 2011), Birmingham, UK, 30 August–1 September 2011. [Google Scholar]
- Umashankar, S.; Reddy, R. NPP Inverter Topology for Renewable Energy Applications. Indian J. Electr. Comput. Eng. 2013, 1, 31–38. [Google Scholar]
- Chen, B.; Yao, W.; Lu, Z. Novel five-level three-phase hybrid-clamped converter with reduced components. J. Power Electron. 2014, 14, 1119–1129. [Google Scholar] [CrossRef] [Green Version]
- Baraia, I.; Barrena, J.A.; Abad, G.; Segade, J.M.C.; Iraola, U. An experimentally verified active gate control method for the series connection of IGBT/diodes. IEEE Trans. Power Electron. 2012, 27, 1025–1038. [Google Scholar] [CrossRef]
- Withanage, R.; Shammas, N. Series connection of insulated gate bipolar transistors (IGBTs). IEEE Trans. Power Electron. 2012, 27, 2204–2212. [Google Scholar] [CrossRef]
- Peng, F.Z. A generalized multilevel inverter topology with self voltage balancing. IEEE Trans. Ind. Appl. 2001, 37, 611–618. [Google Scholar] [CrossRef]
- Wu, W.; Wang, D.J.I.A. An optimal voltage-level based model predictive control approach for four-level T-type nested neutral point clamped converter with reduced calculation burden. IEEE Access 2019, 7, 87458–87468. [Google Scholar] [CrossRef]
- Bahrami, A.; Narimani, M. A sinusoidal pulsewidth modulation (SPWM) technique for capacitor voltage balancing of a nested T-type four-level inverter. IEEE Trans. Power Electron. 2018, 34, 1008–1012. [Google Scholar] [CrossRef]
- Kordic, M.; Narimani, M.; Alimardani, M. A New Hybrid Multilevel Nested Neutral Point Clamped (NNPC) Converter. In Proceedings of the 2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE), Quebec City, QC, Canada, 13–16 May 2018. [Google Scholar]
Sa | Q1 | S1 | S2 | Q2 | T1 | T2 | T3 | T4 | Vag |
---|---|---|---|---|---|---|---|---|---|
3 | on | off | off | off | on | on | off | off | +3Vdc |
2 | off | on | on | off | on | on | off | off | +2Vdc |
1 | off | on | on | off | off | off | on | on | +Vdc |
0 | off | off | off | on | off | off | on | on | 0 |
SaSbSc | Q1 | S1 S2 | Q2 | Q3 | S3 S4 | Q4 | Q5 | S5 S6 | Q6 | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
300 | on | on | off | off | off | on | off | off | on | on | on | off | off |
310 | on | on | off | off | on | off | off | off | on | off | off | on | on |
320 | on | on | off | off | on | off | off | off | on | on | on | off | off |
330 | on | on | off | on | on | off | off | off | on | on | on | off | off |
230 | off | on | off | on | on | off | off | off | on | on | on | off | off |
130 | off | on | off | on | on | off | off | off | on | off | off | on | on |
030 | off | off | on | on | on | off | off | off | on | off | off | on | on |
031 | off | off | on | on | on | off | off | on | off | off | off | on | on |
032 | off | off | on | on | on | off | off | on | off | on | on | off | off |
033 | off | off | on | on | on | off | on | on | off | on | on | off | off |
023 | off | off | on | off | on | off | on | on | off | on | on | off | off |
013 | off | off | on | off | on | off | on | on | off | off | off | on | on |
003 | off | off | on | off | off | on | on | on | off | off | off | on | on |
103 | off | on | off | off | off | on | on | on | off | off | off | on | on |
203 | off | on | off | off | off | on | on | on | off | on | on | off | off |
303 | on | on | off | off | off | on | on | on | off | on | on | off | off |
302 | on | on | off | off | off | on | off | on | off | on | on | off | off |
301 | on | on | off | off | off | on | off | on | off | off | off | on | on |
Sa | Q1 | S1 | S2 | Q2 | T1 | T2 | T3 | T4 | Vag |
---|---|---|---|---|---|---|---|---|---|
3 | on | on | off | off | on | on | off | off | +3Vdc |
2 | off | on | on | off | on | on | off | off | +2Vdc |
1 | off | on | on | off | off | off | on | on | +Vdc |
0 | off | off | on | on | off | off | on | on | 0 |
Voltage Transition | Switching Energy Loss | ||
---|---|---|---|
Iout 0 | |||
+3Vdc | to | +2Vdc | EQ1,off, EDs2,on |
+2Vdc | to | +3Vdc | EQ1,on, EDs2,off |
+2Vdc | to | +Vdc | ET1,off, EDT2,off, ET3,on, EDT4,on |
+Vdc | to | +2Vdc | ET1,on, EDT2,on, ET3,off, EDT4,off |
+Vdc | to | 0 | ES1,off, EDQ2,on |
0 | to | +Vdc | ES1,on, EDQ2,off |
Iout 0 | |||
+3Vdc | to | +2Vdc | EDQ1,off, ES2,on |
+2Vdc | to | +3Vdc | EDQ1,on, ES2,off |
+2Vdc | to | +Vdc | EDT1,off, ET2,off, EDT3,on, ET4,on |
+Vdc | to | +2Vdc | EDT1,on, ET2,on, EDT3,off, ET4,off |
+Vdc | to | 0 | EDS1,off, EQ2,on |
0 | to | +Vdc | EDS1,on, EQ2,off |
Voltage Transition | Switching Energy Loss |
---|---|
Iout 0 | |
+3Vdc to +2Vdc | EQ1,off, ES1,on, ES2,on, EDa2,on |
+2Vdc to +3Vdc | EQ1,on, ES1,off, ES2,off, EDa2,off |
+2Vdc to +1Vdc | ET1,off, EDz2,off, ET3,on, EDz4,on |
+1Vdc to +2Vdc | ET1,on, EDz2,on, ET3,off, EDz4,off |
+1Vdc to 0 | ES2,off, ES1,off, EQ2,on, ED2,on |
0 to +1Vdc | ES2,on, ES1,on, EQ2,off, ED2,off |
Iout 0 | |
+3Vdc to +2Vdc | ED1,off, EQ1,off, ES1,on, ES2,on |
+2Vdc to +3Vdc | EQ1,on, ED1,on, ES1,off, ES2,off |
+2Vdc to +1Vdc | EDZ1,off, ET2,off, EDz3,on, ET4,on |
+1Vdc to +2Vdc | EDZ1,on, ET2,on, EDz3,off, ET4,off |
+1Vdc to 0 | EDa1,off, ES1,off, ES2,off, EQ2,on |
0 to +1 Vdc | EDa1,on, ES1,on, ES2,on, EQ2,off |
The Current | The Conducting Devices | Vag |
---|---|---|
Ia > 0 | Q1 | +3Vdc |
T1, DT2, S1, DS2 | +2Vdc | |
DT4, T3,S1,DS2 | +1Vdc | |
DQ2 | 0 | |
Ia < 0 | DQ1 | +3Vdc |
DT1,T2,DS1,S2 | +2Vdc | |
T4, DT3, DS1, S2 | +1Vdc | |
Q2 | 0 |
Converter Type | 4-Level [39,40] | NPC [2] | Figure 7b [2] | Figure 9b [39] | Figure 9a [41,42] | 4LT2C |
---|---|---|---|---|---|---|
Switches | 18 | 18 | 16 | 36 | 18 | 16 |
Extra Diodes | 0 | 18 | 16 | 12 | 6 | 0 |
Clamping Diodes | 0 | 12 | 0 | 0 | 0 | 0 |
DC Supplies | 2 | 3 | 2 | 9 | 3 | 2 |
Capacitors | Yes | No | No | Yes | Yes | No |
No. of Levels | 4 | 4 | 4 | 4 | 4 | 4 |
4LT2C | Main Bridge Q1–Q6 | Main Bridge S1–S6 | Dc-Link T1–T4 |
---|---|---|---|
Rated Voltage | (N − 1) Vdc | (N − 2)Vdc | NVd |
Converter Type | Rated Voltage | ||
---|---|---|---|
Main Converter Switch | Clamping Diode | Clamping Capacitor | |
NPC | Vdc | Vdc | n/a |
FC | Vdc | n/a | Vdc |
CHB | Vdc | n/a | n/a |
NLT2C | (N − 1) Vd | n/a | n/a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alnamer, S.S.; Mekhilef, S.; Mokhlis, H.; M. L. Tan, N. A Novel Multilevel DC-Link Three-Phase T-Type Inverter. Energies 2020, 13, 4186. https://doi.org/10.3390/en13164186
Alnamer SS, Mekhilef S, Mokhlis H, M. L. Tan N. A Novel Multilevel DC-Link Three-Phase T-Type Inverter. Energies. 2020; 13(16):4186. https://doi.org/10.3390/en13164186
Chicago/Turabian StyleAlnamer, Saddam Shueai, Saad Mekhilef, Hazlie Mokhlis, and Nadia M. L. Tan. 2020. "A Novel Multilevel DC-Link Three-Phase T-Type Inverter" Energies 13, no. 16: 4186. https://doi.org/10.3390/en13164186
APA StyleAlnamer, S. S., Mekhilef, S., Mokhlis, H., & M. L. Tan, N. (2020). A Novel Multilevel DC-Link Three-Phase T-Type Inverter. Energies, 13(16), 4186. https://doi.org/10.3390/en13164186