Evaluation of Polyethylene Mulching and Sugarcane Cultivar on Energy Inputs and Greenhouse Gas Emissions for Ethanol Production in a Temperate Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.1.1. Treatments for Mulching
2.1.2. Measurement and Statistical Analysis
2.2. Life Cycle Assessment
2.2.1. System Description
2.2.2. Life Cycle Inventory
2.2.3. Life Cycle Impact Assessment and Sensitivity Analysis
3. Results and Discussion
3.1. Stalk Yield and Yield-Related Components
3.2. Energy Inputs and GHG Emissions from Fuel and Agricultural Materials
3.3. Total Energy Inputs and Total GHG Emissions to Produce 1 L of Ethanol
3.4. Comparison of Sugarcane Cultivation Systems and Other Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Cultivar | Mulching Treatment | Rep. | No. Plots | ||||||
---|---|---|---|---|---|---|---|---|---|
2003 | 2004 | 2005 | 2006 | 2007 | 2008 | ||||
Exp. 1 | Plant cane | 1st ratoon | 2nd ratoon | 3rd ratoon | |||||
NiF8 | M | M | M | M | 3 | 18 | |||
M | U | U | U | 3 | |||||
U | U | U | U | 3 | |||||
NiTn18 | M | M | M | M | 3 | ||||
M | U | U | U | 3 | |||||
U | U | U | U | 3 | |||||
Exp.2 | Plant cane | 1st ratoon | 2nd ratoon | 3rd ratoon | |||||
NiF8 | M | M | M | M | 2 | 12 | |||
M | U | U | U | 2 | |||||
U | U | U | U | 2 | |||||
NiTn18 | M | M | M | M | 2 | ||||
M | U | U | U | 2 | |||||
U | U | U | U | 2 | |||||
Exp.3 | Plant cane | 1st ratoon | 2nd ratoon | 3rd ratoon | |||||
NiF8 | M | M | M | M | 2 | 12 | |||
M | U | U | U | 2 | |||||
U | U | U | U | 2 | |||||
NiTn18 | M | M | M | M | 2 | ||||
M | U | U | U | 2 | |||||
U | U | U | U | 2 |
Plant Cane | 1st Ratoon | 2nd Ratoon | 3rd Ratoon | |||||
---|---|---|---|---|---|---|---|---|
P | H | R | H | R | H | R | H | |
Exp.1 | 31 March 2003 | 21 January 2004 | 17 February 2004 | 20 January 2005 | 21 February 2005 | 16 January 2006 | 14 February 2006 | 19 January 2007 |
Exp.2 | 25 February 2004 | 27 January 2005 | 21 February 2005 | 16 January 2006 | 14 February 2006 | 19 January 2007 | 16 February 2007 | 19 December 2007 |
Exp.3 | 9 March 2005 | 7 February 2006 | 22 February 2006 | 8 February 2007 | 19 February 2007 | 9 January 2008 | 19 February 2008 | 26 January 2009 |
References
- Robertson, G.P.; Paul, E.A.; Harwood, R.R. Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere. Science 2000, 289, 1922–1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, P.; Bustamante, M.; Ahammad, H.; Clark, H.; Dong, H.; Elsiddig, E.A.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; et al. Agriculture, forestry and other land use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 811–922. [Google Scholar]
- Bakker, H. Sugar Cane Cultivation and Management; Kluwer Academic/Plenum Publishers: New York, NY, USA, 1999; pp. 1–679. [Google Scholar]
- Ahorsu, R.; Medina, F.; Constantí, M. Significance and challenges of biomass as a suitable feedstock for bioenergy and biochemical production: A review. Energies 2018, 11, 3366. [Google Scholar] [CrossRef] [Green Version]
- Cardona, C.A.; Sanchez, O.J. Fuel ethanol production: Process design trends and integration opportunities. Bioresour. Technol. 2007, 98, 2415–2457. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Agriculture, Forestry and Fisheries, Annual Report on Food, Agriculture and Rural Areas in Japan FY. 2007. Available online: www.maff.go.jp/e/data/publish/an_archive.html (accessed on 29 June 2020).
- Goldemberg, J.; Coelho, S.T.; Guardabassi, P. The sustainability of ethanol production from sugarcane. Energy Policy 2008, 36, 2086–2097. [Google Scholar] [CrossRef]
- Hira, A.; de Oliveira, L.G. No substitute for oil? How Brazil developed its ethanol industry. Energy Policy 2009, 37, 2450–2456. [Google Scholar] [CrossRef]
- Matsuoka, M. Sugarcane cultivation and sugar industry in Japan. Sugar Tech 2006, 8, 3–9. [Google Scholar] [CrossRef]
- Japan Meteorological Agency (JMA). Weather Information of the Tanegashima Island During 1981–2010. Available online: www.data.jma.go.jp/obd/stats/etrn (accessed on 29 June 2020). (In Japanese).
- Kagoshima Prefecture, Agriculture, Forestry & Fisheries Department. Report of Sugarcane and Sugar Production; Kagoshima Prefecture, Agriculture, Forestry & Fisheries Department: Kagoshima, Japan, 2010. (In Japanese) [Google Scholar]
- Ebata, M.; Aihoshi, K.; Nakama, N.; Shimowada, K.; Urasaki, K. Studies on the polyethylene-film cover and mulching for sugarcane (I) The effects of mulching and planting date on the spring planting of sugarcane. Kyushu Agric. Res. 1969, 31, 73–74. (In Japanese) [Google Scholar]
- Millard, E.W. Plastic mulching of sugarcane. SASTA Proc. 1974, 48, 53–57. [Google Scholar]
- Yasuniwa, M.; Machida, M.; Uezono, T.; Kouzuma, M.; Izumi, S.; Kamikado, T.; Misono, A. The development of sugarcane cultivation by ratooning in Tanegashima island. Bull. Kagoshima Pref. Agri. Exp. Stat. 1991, 19, 1–16. (In Japanese) [Google Scholar]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Li, Y.-R.; Yang, L.-T. Sugarcane agriculture and sugar industry in China. Sugar Tech 2015, 17, 1–8. [Google Scholar] [CrossRef]
- Sugar Industry Association of Kagoshima Prefecture. Guideline for Sugarcane Cultivation in Kagoshima Prefecture; Sugar Industry Association of Kagoshima Prefecture: Kagoshima, Japan, 2010. (In Japanese) [Google Scholar]
- International Organization for Standardization (ISO). ISO 14040, Environmental Management—Life Cycle Assessment—Principles and Framework; ISO: Geneva, Switzerland, 2006; pp. 1–20. [Google Scholar]
- International Organization for Standardization (ISO). ISO 14044, Environmental Management—Life Cycle Assessment—Requirements and Guidelines; ISO: Geneva, Switzerland, 2006; pp. 1–44. [Google Scholar]
- Goldemberg, J. Ethanol for a sustainable energy future. Science 2007, 315, 808–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Blottnitz, H.; Curran, M.A. A review of assessments conducted on bioethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. J. Clean. Prod. 2007, 15, 607–619. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). The State of Food and Agriculture 2008: Biofuels: Prospects, Risks and Opportunities; FAO: Rome, Italy, 2008; Volume 38, pp. 1–128. [Google Scholar]
- Macedo, I.C.; Seabra, J.E.A.; Silva, J.E.A.R. Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020. Biomass Bioenergy 2008, 32, 582–595. [Google Scholar] [CrossRef]
- Nguyen, T.L.T.; Gheewala, S.H.; Bonnet, S. Life cycle assessment of fuel ethanol from cane molasses in Thailand. Int. J. Life Cycle Assess. 2008, 13, 301–311. [Google Scholar] [CrossRef]
- Nakashima, T.; Ishikawa, S. Energy inputs and greenhouse gas emissions associated with small-scale farmer sugarcane cropping systems and subsequent bioethanol production in Japan. NJAS Wagening. J. Life Sci. 2016, 76, 43–53. [Google Scholar] [CrossRef]
- Lam, E.; Shine, J., Jr.; Da Silva, J.; Lawton, M.; Bonos, S.; Calvino, M.; Carrer, H.; Silva-Filho, M.C.; Glynn, N.; Helsel, Z.; et al. Improving sugarcane for biofuel: Engineering for an even better feedstock. GCB Bioenergy 2009, 1, 251–255. [Google Scholar] [CrossRef]
- Waclawovsky, A.J.; Sato, P.M.; Lembke, C.G.; Moore, P.H.; Souza, G.M. Sugarcane for bioenergy production: An assessment of yield and regulation of sucrose content. Plant Biotechnol. J. 2010, 8, 263–276. [Google Scholar] [CrossRef] [Green Version]
- Terajima, Y.; Sugimoto, A.; Matsuoka, M.; Ujihara, K.; Sakaigaichi, T.; Fukuhara, S.; Maeda, H.; Katsuta, Y.; Oka, M.; Shimoda, S.; et al. New sugarcane cultivar NiTn18 with excellent ratooning ability in mulch-free cultivation. Bull. Natl. Agric. Res. Ctr. Kyushu Okinawa Reg. 2010, 54, 23–41. [Google Scholar]
- Agriculture, Forestry and Fisheries Research Council. Development of Bio-Energy Crops for Domestic Production and Low-Input Cultivation Technologies; The Ministry of Agriculture, Forestry and Fisheries: Tokyo, Japan, 2014; Volume 498, pp. 1–258. (In Japanese) [Google Scholar]
- Wortmann, C.S.; Liska, A.J.; Ferguson, R.B.; Lyon, D.J.; Klein, R.N.; Dweikat, I. Dryland performance of sweet sorghum and grain crops for biofuel in Nebraska. Agron. J. 2010, 102, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.L.; Steinberger, Y.; Shi, M.; Han, L.P.; Xie, G.H. Changes in stem composition and harvested produce of sweet sorghum during the period from maturity to a sequence of delayed harvest dates. Biomass Bioenergy 2012, 39, 261–273. [Google Scholar] [CrossRef]
- GHG Protocol, Inventory Database for Environmental Analysis (IDEA). Available online: www.ghgprotocol.org/third-party-databases/IDEA (accessed on 29 June 2020).
- Inventory Database for Environmental Analysis (IDEA). Available online: http://idea-lca.jp (accessed on 29 June 2020).
- Ogino, A.; Orito, H.; Shimada, K.; Hirooka, H. Evaluating environmental impacts of the Japanese beef cow-calf system by the life cycle assessment method. Anim. Sci. J. 2007, 78, 424–432. [Google Scholar] [CrossRef]
- Ogino, A.; Osada, T.; Takada, R.; Takagi, T.; Tsujimoto, S.; Tonoue, T.; Matsui, D.; Katsumata, M.; Yamashita, T.; Tanaka, Y. Life cycle assessment of Japanese pig farming using low-protein diet supplemented with amino acids. Soil Sci. Plant Nutr. 2013, 59, 107–118. [Google Scholar] [CrossRef]
- Center for Environmental Information Service. Guidebook for Life Cycle Inventory Analysis; The Chemical Daily Co. Ltd.: Tokyo, Japan, 1998. (In Japanese) [Google Scholar]
- De Klein, C.; Novoa, R.S.; Ogle, S.; Smith, K.A.; Rochette, P.; Wirth, T.C.; McConkey, B.G.; Mosier, A.; Rypdal, K.; Walsh, M.; et al. N2O emissions from managed soils, and CO2 emissions from lime and urea application. In IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme 4; Eggleston, S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IPCC: Kanagawa, Japan, 2006; Chapter 11; pp. 1–54. [Google Scholar]
- Akiyama, H.; Yan, X.; Yagi, K. Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan: Summary of available data. Soil Sci. Plant Nutr. 2006, 52, 774–787. [Google Scholar] [CrossRef]
- Greenhouse Gas Inventory Office of Japan. National Greenhouse Gas Inventory Report of Japan 2017; Ministry of the Environment: Tokyo, Japan, 2017; Available online: www-gio.nies.go.jp/aboutghg/nir/nir-archives_e.html (accessed on 29 June 2020).
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in atmospheric constituents and in radiative forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; Chapter 2; pp. 130–234. [Google Scholar]
- Bruce, T.J.A.; Matthes, M.C.; Napier, J.A.; Pickett, J.A. Stressful memories of plants: Evidence and possible mechanisms. Plant Sci. 2007, 173, 603–608. [Google Scholar] [CrossRef]
- Nakashima, T. Life cycle assessment integrated into positive mathematical programming: A conceptual model for analyzing area-based farming policy. JARQ Jpn. Agric. Res. Q. 2010, 44, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, T.; Ishikawa, S. Linking life cycle assessment to bioeconomic modelling with positive mathematical programming: An alternative approach to calibration. J. Clean. Prod. 2017, 167, 875–884. [Google Scholar] [CrossRef]
- Irvine, J.E. Identification of cold tolerance in Saccharum and related genera through refrigerated freeze screening. Proc. Int. Soc. Sugarcane Technol. 1978, 16, 147–156. [Google Scholar]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef]
- Arriaga, H.; Núñez-Zofio, M.; Larregla, S.; Merino, P. Gaseous emissions from soil biodisinfestation by animal manure on a greenhouse pepper crop. Crop. Prot. 2011, 30, 412–419. [Google Scholar] [CrossRef]
- Nishimura, S.; Komada, M.; Takebe, M.; Yonemura, S.; Kato, N. Nitrous oxide evolved from soil covered with plastic mulch film in horticultural field. Biol. Fertil. Soils 2012, 48, 787–795. [Google Scholar] [CrossRef]
- Cuello, J.P.; Hwang, H.Y.; Gutierrez, J.; Kim, S.Y.; Kim, P.J. Impact of plastic film mulching on increasing greenhouse gas emissions in temperate upland soil during maize cultivation. Appl. Soil Ecol. 2015, 91, 48–57. [Google Scholar] [CrossRef]
- Berger, S.; Kim, Y.; Kettering, J.; Gebauer, G. Plastic mulching in agriculture—Friend or foe of N2O emissions? Agric. Ecosyst. Environ. 2013, 167, 43–51. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, R.; Wang, X.; Chen, F.; Lai, D.; Tian, C. Effects of plastic film mulching with drip irrigation on N2O and CH4 emissions from cotton fields in arid land. J. Agric. Sci. 2014, 152, 534–542. [Google Scholar] [CrossRef]
Treatment | Plant Cane | 1st Ratoon | 2nd Ratoon | 3rd Ratoon |
---|---|---|---|---|
MM | √ | √ | √ | √ |
MU | √ | |||
UU |
Cultivar/Mulching | Plant Cane | 1st Ratoon | 2nd Ratoon | 3rd Ratoon | Total 4 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SY 3 | BJ | FY | TS | SY | BJ | FY | TS | SY | BJ | FY | TS | SY | BJ | FY | TS | SY | BJ | FY | TS | |
NiF8 1 | ||||||||||||||||||||
MM 2 | 73.0 | 16.5 | 7.6 | 10.7 | 75.9 | 17.2 | 8.4 | 11.6 | 77.5 | 18.5 | 8.7 | 12.5 | 61.8 | 19.2 | 8.2 | 10.3 | 71.6 | 17.9 | 8.2 | 11.2 |
MU | 73.0 | 16.5 | 7.6 | 10.7 | 45.7 | 16.9 | 5.0 | 6.9 | 46.7 | 18.4 | 5.5 | 7.6 | 34.7 | 18.8 | 4.2 | 5.7 | 50.5 | 17.6 | 5.6 | 7.8 |
UU | 55.4 | 16.2 | 5.5 | 7.9 | 51.4 | 16.9 | 5.6 | 7.9 | 51.9 | 18.3 | 6.3 | 8.5 | 40.7 | 18.8 | 5.1 | 6.7 | 49.9 | 17.6 | 5.6 | 7.7 |
NiTn18 | ||||||||||||||||||||
MM | 91.0 | 16.7 | 11.3 | 13.2 | 97.2 | 17.9 | 14.2 | 14.8 | 86.9 | 19.3 | 13.6 | 14.0 | 66.1 | 19.4 | 10.9 | 10.7 | 84.6 | 18.3 | 12.5 | 13.1 |
MU | 91.0 | 16.7 | 11.3 | 13.2 | 87.7 | 17.3 | 12.0 | 13.1 | 78.4 | 18.5 | 11.4 | 12.3 | 56.6 | 19.2 | 8.9 | 9.1 | 79.2 | 17.9 | 10.9 | 12.1 |
UU | 76.8 | 16.3 | 9.0 | 10.9 | 81.7 | 17.4 | 11.1 | 12.2 | 76.6 | 18.7 | 11.8 | 12.1 | 57.8 | 19.3 | 9.2 | 9.4 | 73.2 | 18.0 | 10.3 | 11.2 |
Interaction | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | * | ns | ns | * |
Cultivar | *** | ns | *** | *** | *** | * | *** | *** | *** | * | *** | *** | ** | ** | *** | ** | *** | ** | *** | *** |
Mulch | *** | ns | *** | *** | ** | ns | *** | *** | ** | ns | *** | *** | ** | ns | ** | ** | *** | * | *** | *** |
Energy Input Source | Sugarcane Cultivar | |||||
---|---|---|---|---|---|---|
NiF8 | NiTn18 | |||||
Mulching Treatment | ||||||
MM | MU | UU | MM | MU | UU | |
On-farm energy inputs | ||||||
Tractor-based field operations | 7.59 | 5.94 | 5.82 | 8.44 | 7.83 | 7.34 |
Manure application | 0.0493 | 0.0493 | 0.0493 | 0.0493 | 0.0493 | 0.0493 |
Tillage 1 | 0.812 | 0.812 | 0.812 | 0.812 | 0.812 | 0.812 |
Planting 2 | 0.216 | 0.216 | 0.216 | 0.216 | 0.216 | 0.216 |
Mulching | 0.325 | 0.0813 | - | 0.325 | 0.0813 | - |
Intertillage 3 | 0.727 | 0.727 | 0.727 | 0.727 | 0.727 | 0.727 |
Insecticide spraying | 0.205 | 0.205 | 0.205 | 0.205 | 0.205 | 0.205 |
Harvesting | 4.72 | 3.32 | 3.28 | 5.57 | 5.21 | 4.80 |
Ratooning 4 | 0.531 | 0.531 | 0.531 | 0.531 | 0.531 | 0.531 |
Truck transport of input materials | 0.250 | 0.227 | 0.220 | 0.250 | 0.227 | 0.220 |
Truck transport of sugarcane | 2.48 | 1.75 | 1.73 | 2.93 | 2.74 | 2.53 |
Subtotal (A) | 10.3 | 7.92 | 7.77 | 11.6 | 10.8 | 10.1 |
Off-farm energy inputs | ||||||
Fertilizers | 15.0 | 15.0 | 15.0 | 15.0 | 15.0 | 15.0 |
Agrochemicals | 2.95 | 2.95 | 2.95 | 2.95 | 2.95 | 2.95 |
Agricultural machinery | 5.20 | 5.20 | 5.20 | 5.20 | 5.20 | 5.20 |
Polyethylene film for mulching | 5.52 | 1.11 | - | 5.52 | 1.11 | - |
Seed cane | 1.08 | 1.08 | 1.08 | 1.08 | 1.08 | 1.08 |
Subtotal (B) | 29.8 | 25.3 | 24.2 | 29.8 | 25.3 | 24.2 |
Total (A + B) | 40.1 | 33.2 | 32.0 | 41.4 | 36.1 | 34.3 |
Greenhouse Gas Emission Source | Sugarcane Cultivar | |||||
---|---|---|---|---|---|---|
NiF8 | NiTn18 | |||||
Mulching Treatment | ||||||
MM | MU | UU | MM | MU | UU | |
On-farm energy inputs | ||||||
Tractor-based field operations | 0.547 | 0.429 | 0.420 | 0.608 | 0.565 | 0.530 |
Manure application | 0.00360 | 0.00360 | 0.00360 | 0.00360 | 0.00360 | 0.00360 |
Tillage 1 | 0.0585 | 0.0585 | 0.0585 | 0.0585 | 0.0585 | 0.0585 |
Planting 2 | 0.0155 | 0.0155 | 0.0155 | 0.0155 | 0.0155 | 0.0155 |
Mulching | 0.0230 | 0.00575 | - | 0.0230 | 0.00575 | - |
Intertillage 3 | 0.0524 | 0.0524 | 0.0524 | 0.0524 | 0.0524 | 0.0524 |
Insecticide spraying | 0.0145 | 0.0145 | 0.0145 | 0.0145 | 0.0145 | 0.0145 |
Harvesting | 0.341 | 0.240 | 0.237 | 0.402 | 0.376 | 0.347 |
Ratooning 4 | 0.0383 | 0.0383 | 0.0383 | 0.0383 | 0.0383 | 0.0383 |
Truck transport of input materials | 0.0180 | 0.0164 | 0.0158 | 0.0180 | 0.0164 | 0.0158 |
Truck transport of sugarcane | 0.179 | 0.126 | 0.125 | 0.211 | 0.198 | 0.183 |
Subtotal (A) | 0.744 | 0.571 | 0.561 | 0.837 | 0.779 | 0.729 |
Off-farm energy inputs | ||||||
Fertilizers | 0.673 | 0.673 | 0.673 | 0.673 | 0.673 | 0.673 |
Agrochemicals | 0.155 | 0.155 | 0.155 | 0.155 | 0.155 | 0.155 |
Agricultural machinery | 0.448 | 0.448 | 0.448 | 0.448 | 0.448 | 0.448 |
Polyethylene film for mulching | 0.161 | 0.0323 | - | 0.161 | 0.0323 | - |
Seed cane | 0.104 | 0.104 | 0.104 | 0.104 | 0.104 | 0.104 |
Subtotal (B) | 1.54 | 1.41 | 1.38 | 1.54 | 1.41 | 1.38 |
Soil-associated emissions (C) | 0.909 | 0.909 | 0.909 | 0.909 | 0.909 | 0.909 |
Total (A + B + C) | 3.19 | 2.89 | 2.85 | 3.29 | 3.10 | 3.02 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakashima, T.; Ueno, K.; Fujita, E.; Ishikawa, S. Evaluation of Polyethylene Mulching and Sugarcane Cultivar on Energy Inputs and Greenhouse Gas Emissions for Ethanol Production in a Temperate Climate. Energies 2020, 13, 4369. https://doi.org/10.3390/en13174369
Nakashima T, Ueno K, Fujita E, Ishikawa S. Evaluation of Polyethylene Mulching and Sugarcane Cultivar on Energy Inputs and Greenhouse Gas Emissions for Ethanol Production in a Temperate Climate. Energies. 2020; 13(17):4369. https://doi.org/10.3390/en13174369
Chicago/Turabian StyleNakashima, Takahiro, Keiichiro Ueno, Eisuke Fujita, and Shoko Ishikawa. 2020. "Evaluation of Polyethylene Mulching and Sugarcane Cultivar on Energy Inputs and Greenhouse Gas Emissions for Ethanol Production in a Temperate Climate" Energies 13, no. 17: 4369. https://doi.org/10.3390/en13174369
APA StyleNakashima, T., Ueno, K., Fujita, E., & Ishikawa, S. (2020). Evaluation of Polyethylene Mulching and Sugarcane Cultivar on Energy Inputs and Greenhouse Gas Emissions for Ethanol Production in a Temperate Climate. Energies, 13(17), 4369. https://doi.org/10.3390/en13174369