Development and Performance Investigation of an Inflatable Solar Drying Technology for Oyster Mushroom
Abstract
:1. Introduction
2. Methodology
2.1. Assessment of the Solar Bubble Dryer (SBD)
2.2. Experiment and Measurements
2.3. Energy Efficiency and GHG Emissions of Mushroom Drying Using SBD
2.4. Cost-Benefit Analysis
2.5. Statistical Analysis and Software
3. Results
3.1. Adaptation of the SBD for Mushroom Drying
3.2. Drying Characteristics
3.3. Quality of Mushroom Product
3.4. Energy Efficiency, GHG Emissions, and Cost-Benefits of Mushroom Drying
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grujic, B.D.; Potocnik, I.; Duduk, B.; Vujcic, Z. Spent mushroom compost as substrate for the production of industrially important hydrolytic enzymes by fungi Trichoderma spp. and Aspergillus niger in solid state fermentation. Int. Biodeterior. Biodegrad. 2015, 104, 290–298. [Google Scholar] [CrossRef]
- Corales, R.G.; Sajor, J.T.; Truc, N.T.T.; Hien, P.H.; Ramos, R.E.; Bautista, E.; Tado, C.J.M.; Ompad, V.; Son, D.T.; Van Hung, N. Rice-Straw Mushroom Production. In Sustainable Rice Straw Management; Gummert, M., Van-Hung, N., Chivenge, P., Douthwaite, B., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Yang, W.; Guo, F.; Wan, Z. Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull. Saudi J. Biol. Sci. 2013, 20, 333–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.T. The world mushroom industry: Trends and technological development. Int. J. Med. Mush. 2006, 8, 297–314. [Google Scholar] [CrossRef]
- Obodai, M.C.O.; Vowotor, K.A. Comparative study on the growth and yield of Pleurotus ostreatus mushroom on different lignocellulosic by-products. J. Ind. Microb. Biotechnol. 2003, 30, 146–149. [Google Scholar] [CrossRef]
- Zhang, R.; Li, X.; Fadel, J.G. Oyster mushroom cultivation with rice and wheat straw. Bioresour. Technol. 2002, 82, 277–284. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Srivastav, P.R.; Mishra, H.N. Thin-layer modeling of convective and microwave-convective drying of oyster mushroom (Pleurotus ostreatus). J. Food Sci. Technol. 2015, 52, 2013–2022. [Google Scholar] [CrossRef] [Green Version]
- Khatuna, S.; Islamb, A.; Cakilciogluc, U.; Gulerd, P.; Chatterjee, N.C. Nutritional qualities and antioxidant activity of three edible oyster mushrooms (Pleurotus spp.). NJAS-Wagening. J. Life Sci. 2015, 72–73, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Garcha, H.S.; Khanna, P.K.; Soni, G.L. Nutritional importance of mushrooms. In Mushroom Biology and Mushroom Products, Proceedings of the First International Conference; Chang, S.T., Chiu, B.S., Eds.; The Chinese University of Hong Kong: Hong Kong, China, 1993; pp. 227–236. [Google Scholar]
- Demont, M.; Ngo, T.T.T.; Van Hung, N.; Duong, G.P.; Dương, T.M.; Hoang, N.T.; Custodio, M.C.; Quilloy, R.; Gummert, M. Rice straw value chain and a case study for rice straw mushroom value chain in Vietnam. In Sustainable Rice Straw Management; Gummert, M., Van-Hung, N., Chivenge, P., Douthwaite, B., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Van Nguyen, H.; Nguyen, C.D.; Van Tran, T.; Hau, H.D.; Nguyen, N.T.; Gummert, M. Energy Efficiency, Greenhouse Gas Emissions, and Cost of Rice Straw Collection in the Mekong River Delta of Vietnam. Field Crops Res. 2016, 198, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Van-Hung, N.; Detras, M.C.M.; Migo, M.V.; Quilloy, R.; Balingbing, C.; Chivenge, P.; Gummert, M. Rice Straw Overview: Availability, Properties, and Management Practices. In Sustainable Rice Straw Management; Gummert, M., Van-Hung, N., Chivenge, P., Douthwaite, B., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Kulshreshtha, M.; Singh, A.; Vipul, D. Effect of drying conditions on mushroom quality. J. Eng. Sci. Technol. 2009, 4, 90–98. [Google Scholar]
- Sandhu, K.S.; Aggarwal, P. Steeping preservation of mushrooms (Agaricus bisporus). J. Res. Punjab Agric. Univ. 2001, 38, 53–57. [Google Scholar]
- Yılmaz, F.M.; Bastıoğlu, A.Z. Production of phenolic enriched mushroom powder as affected by impregnation method and air-drying temperature. LWT-Food Sci. Technol. 2020, 122. [Google Scholar] [CrossRef]
- Kurt, A.; Genccelep, H. Enrichment of meat emulsion with mushroom (Agaricus bisporus) powder: Impact on rheological and structural characteristics. J. Food Eng. 2018, 237, 128–136. [Google Scholar] [CrossRef]
- Okafor, J.N.C.; Okafor, G.I.; Ozumba, A.U.; Elemo, G.N. Quality characteristics of bread made from wheat and Nigerian oyster mushroom (Pleurotus plumonarius) powder. Pak. J. Nutr. 2012, 11, 5–10. [Google Scholar] [CrossRef]
- Bano, Z.; Rajarathnam, S.; Shashirekha, M.N. Mushrooms—Unconventional single cell protein for a conventional consumption. Indian Food Pack. 1992, 46, 20–31. [Google Scholar]
- Das, I.; Arora, A. Alternate microwave and convective hot air application for rapid mushroom drying. J. Food Eng. 2018, 223, 208–219. [Google Scholar] [CrossRef]
- Amuthan, G.; Visvanathan, R.; Kailappan, R.; Sreenarayanan, V.V. Studies on osmo-air drying of milky mushroom, Calocybe Indica. Mush. Res. 1999, 8, 49–52. [Google Scholar]
- Kar, A.; Gupta, D.K. Osmotic dehydration characteristics of button mushrooms. J. Food Sci. Technol. 2001, 38, 352–357. [Google Scholar]
- Sevik, S.; Aktas, M.; Dogan, H.; Kocak, S. Mushroom drying with solar assisted heat pump system. Energy Convers. Manag. 2013, 72, 171–178. [Google Scholar] [CrossRef]
- Singh, S.K.; Narain, M.; Kumbhar, B.K. Effect of drying air temperatures and standard pretreatments on the quality of fluidized bed dried button mushroom (Agaricus bisporus). Indian Food Pack. 2001, 55, 82–86. [Google Scholar]
- Rai, R.D.; Arumuganathan, T. Postharvest Technology of Mushrooms. 2008. Available online: https://nrcmushroom.org/Bull_PHT.pdf (accessed on 11 June 2020).
- Amer, B.M.A.; Hossain, M.A.; Gottschalk, K. Design and performance evaluation of a new hybrid solar dryer for banana. Energy Conver. Manag. 2010, 51, 813–820. [Google Scholar] [CrossRef]
- Boughali, S.; Benmoussa, H.; Bouchekima, B.; Mennouche, D.; Bouguettaia, H.; Bechki, D. Crop drying by indirect active hybrid-solar-electrical dryer in the eastern Algerian Septentrional Sahara. Sol. Energy 2009, 83, 2223–2232. [Google Scholar] [CrossRef]
- Reyes, A.; Mahn, A.; Cubillos, F.; Huenulaf, P. Mushroom dehydration in a hybrid-solar dryer. Energy Convers. Manag. 2013, 70, 31–39. [Google Scholar] [CrossRef]
- GrainPro, Bubble Dryer. Available online: https://grainpro.com/grainpro-bubble-dryer (accessed on 11 June 2020).
- Salvatierra-Rojas, A.; Nagle, M.; Gummert, M.; Bruin, T.; Müller, J. Development of an inflatable solar dryer for improved postharvest handling of paddy rice in humid climates. Int. J. Agric. Biol. Eng. 2017, 10, 269–282. [Google Scholar] [CrossRef]
- Nguyen-Van-Hung; Tran-Van-Tuan; Meas, P.; Tado, C.J.M.; Kyaw, M.A.; Gummert, M. Best practices for paddy drying: Case studies in Vietnam, Cambodia, Philippines, and Myanmar. Plant Prod. Sci. J. 2019, 22, 107–118. [Google Scholar] [CrossRef]
- ASAE. Moisture measurement of grain and seeds. In ASAE Standard, 29th ed.; ASABE: St. Joseph, MI, USA, 1982; p. 3521. Available online: https://engineering.purdue.edu/~abe305/moisture/html/page12.htm (accessed on 11 June 2020).
- Lascar. Easylog Datalogger. Available online: https://www.lascarelectronics.com/easylog-el-usb-2 (accessed on 11 June 2020).
- ECOINVENT. Implementation of Ecoinvent 3. Available online: http://www.ecoinvent.org/partners/resellers/implementation-of-ecoinvent-3/implementation-of-ecoinvent-3.html (accessed on 11 June 2020).
- SIMAPRO. SIMAPRO–LCA Software. Available online: https://www.pre-sustainability.com/simapro (accessed on 11 June 2020).
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, J.D.R.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. Compendium of physical activities: A second update of codes and MET values. Med. Sci. Sport. Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Quilty, R.J.; McKinley, J.; Pede, V.O.; Buresh, R.J.; Correa, J.T.Q.; Sandro, J. Energy efficiency of rice production in farmers’ fields and intensively cropped research fields in the Philippines. Field Crop. Res. 2014, 168, 8–18. [Google Scholar] [CrossRef]
- IPCC. Emissions Factor Database. 2013. Available online: http://www.ghgprotocol.org/Third-Party-Databases/IPCC-Emissions-Factor-Database (accessed on 11 June 2020).
- Rama, V.; John, P. Effect of methods of drying and pretreatments on quality of dehydrated mushroom. Indian Food Pack. 2000, 54, 25–35. [Google Scholar]
- Maray, A.; Mostafa, M.; El-Din, A. Effect of pretreatments and drying methods on physico-chemical, sensory characteristics and nutritional value of oyster mushroom. J. Food Process Preserv. 2018. [Google Scholar] [CrossRef] [Green Version]
- Bala, B.K.; Morshed, M.A.; Rahman, M.F. Solar Drying of Mushroom Using Solar Tunnel Dryer. 2009. Available online: https://pdfs.semanticscholar.org/073e/fb15fe273f05cd1b70f97f75839856a158a3.pdf?_ga=2.68302035.3719813.1589409163-4187258.1589409163 (accessed on 11 June 2020).
- Ibrahim, T.A.; Adaramola-Ajibola, K.M.; Adesuyi, A.T.; Olanrewaju, S.O.; Akinro, E.B. Effect of pre-treatments and drying methods on the chemical quality and microbial density of wild edible oyster mushroom. Arch. Food Nutr. Sci. 2017, 1, 39–44. [Google Scholar] [CrossRef]
Parameters | Unit | Method |
---|---|---|
Temperature (T) | °C | Using data logger (EasyLog); the sensors were placed in ambient air and at 3 positions inside the SBD) |
Relative humidity (RH) | % | Using data logger (EasyLog); the sensors were placed in ambient air and at 3 positions inside the SBD) |
Moisture content (MC) in wet basis of mushroom | % | Using oven; the samples were collected at 3 positions along the SBD and at every 2 h |
Drying rate (reduction of MC per hour) | % h−1 | Calculation based on the drying curve |
Energy efficiency | kWh kg−1 | Calculation based on energy required for machine production and operation |
GHG emission | gCO2e kg−1 | For a solar dryer, GHG emissions are just accounted for using emissions caused by machine production |
C and N contained in the mushroom | % (d.m.) | Conducted by a certified lab analysis. The samples were collected before and after drying |
Drying cost | $US kg−1 | Including depreciation, maintenance, interest, and labor cost (no energy cost for SBD). |
Parameters | Input Materials for SBD Production | Energy | GHG Emission | |||
---|---|---|---|---|---|---|
Unit | Total Input | Unit | Value | Unit | Value | |
Plastic firm | kg | 31 | MJ kg−1 | 10.3 | kgCO2e kg−1 | 0.594 |
Photovoltaic cell | m2 | 0.55 | MJ m−2 | 2880 | kgCO2e m−2 | 175 |
Charge controller | unit | 1 | MJ unit−1 | 646 | kgCO2e unit−1 | 44.3 |
Battery | unit | 1 | MJ unit−1 | 5260 | kgCO2e unit−1 | 411 |
Blower | unit | 1 | MJ unit−1 | 472 | kgCO2e unit−1 | 27.3 |
Items | Unit | Value | Source |
---|---|---|---|
Capacity | kg fresh mushroom batch−1 | 30 | Based on the trial (for full capacity) |
SBD Investment cost | $US t−1 | 1855 | Based on the existing SDB price |
Life span | year | 5 | Based on the existing SBD use |
Time of operation per year | day year−1 | 200 | Assumed (considering the climate data shown in Figure 2) |
Maintenance | % (of investment cost) | 10 | Based on the existing SBD use |
Interest | % year−1 | 8 | Philippine data |
Labor | $US h−1 | 0.65 | Philippine data |
Fresh mushroom price | $US kg−1 | 0.7–0.8 | Philippine data |
Dry mushroom price | $US kg−1 | 10–12 | Philippine data |
Batch | C (%) | N (%) | ||
---|---|---|---|---|
Fresh | Dry | Fresh | Dry | |
1 | 45.2 | 44.5 | 5.19 | 4.82 |
2 | 44.4 | 44.1 | 5.12 | 4.79 |
3 | 44.3 | 44.1 | 5.04 | 4.79 |
Average | 44.6 | 44.2 | 5.1 a | 4.8 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Hung, N.; Fuertes, L.A.; Balingbing, C.; Paulo Roxas, A.; Tala, M.; Gummert, M. Development and Performance Investigation of an Inflatable Solar Drying Technology for Oyster Mushroom. Energies 2020, 13, 4122. https://doi.org/10.3390/en13164122
Van Hung N, Fuertes LA, Balingbing C, Paulo Roxas A, Tala M, Gummert M. Development and Performance Investigation of an Inflatable Solar Drying Technology for Oyster Mushroom. Energies. 2020; 13(16):4122. https://doi.org/10.3390/en13164122
Chicago/Turabian StyleVan Hung, Nguyen, Lei Anne Fuertes, Carlito Balingbing, Ampy Paulo Roxas, Marvin Tala, and Martin Gummert. 2020. "Development and Performance Investigation of an Inflatable Solar Drying Technology for Oyster Mushroom" Energies 13, no. 16: 4122. https://doi.org/10.3390/en13164122
APA StyleVan Hung, N., Fuertes, L. A., Balingbing, C., Paulo Roxas, A., Tala, M., & Gummert, M. (2020). Development and Performance Investigation of an Inflatable Solar Drying Technology for Oyster Mushroom. Energies, 13(16), 4122. https://doi.org/10.3390/en13164122