Insights into Nanoscale Wettability Effects of Low Salinity and Nanofluid Enhanced Oil Recovery Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mineral Samples
2.2. Brine and Nanofluids
2.3. AFM Tip Functionalization
2.4. Experimental Procedure
3. Results
3.1. Low Salinity EOR
3.1.1. Effect of Brine Salinity on Adhesion of -CH3 Group to Mica
3.1.2. Effect of Brine Salinity on the Adhesion of -C6H5 Groups to Mica
3.2. Nanofluid EOR
3.2.1. Effect of Silica Nanofluids on the Adhesion of -CH3 Groups to Mica
3.2.2. Effect of Silica Nanofluids on the Adhesion of -C6H5 Groups to Mica
3.2.3. Effect of Silica Nanofluids on the Adhesion of -COOH Groups to Mica
3.3. Relationship between Adhesion Force, Work of Adhesion and Wettability
4. Discussion
5. Conclusions
5.1. Low Salinity EOR
- Reducing salinity of injected water from ~73,000 ppm to 5000 ppm by dilution significantly reduces adhesion force (55–80%) and energy (90%) between clay surfaces and molecules containing non-polar alkane and aromatic compounds to promote nanoscale wettability improvement
- Magnesium and calcium divalent cation bridging have been identified as a prominent mechanism of low salinity EOR in clay-rich systems containing predominantly alkane and aromatic compounds
- The advantage of Mg2+ and Ca2+ ion removal over brine dilution in releasing oil from clays depends on the surface chemical hydrocarbon groups present
- Nanoscopic wettability improvement via ionically tuned brine is mediated by intermolecular contributions such as electrostatic and non-electrostatic adhesion
5.2. Nanofluid EOR
- Hydrophilic silicon dioxide nanoparticles substantially decrease the adhesion force (>90%) and energy (98–99%) required to spontaneously detach both polar and non-polar crude oil components from clay-rich formations, thus improving wettability and potentially increasing ultimate recovery
- Nanosilica materials promote electrostatic repulsion between hydrophobic groups and mica by coating the mica surface and creating more negative charges
- Wettability alteration using nanofluid EOR is driven by surface forces such as electrostatic repulsion, non-electrostatic adhesion and structural interactions
5.3. Adhesion Force, Energy and Wettability
- Adhesion force and energy are fundamental wettability indicators which can be used to screen EOR techniques for petroleum reservoir applications
- Adhesion energy derived from AFM are in excellent agreement with JKR and DMT theories
- Decrease in adhesion force and energy translates to creation of positive disjoining pressure required to repel oil molecules from rock surfaces and stimulate growth of water wetting films
- Structural forces are complex and require more in-depth research in the context of surface wettability in rock/oil/fluid systems
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lake, L.W.; Johns, R.; Bossen, B.; Pope, G. Fundamentals of Enhanced Oil Recovery, 2nd ed.; Society of Petroleum Engineers: Richardson, TX, USA, 2014; 479 p. [Google Scholar]
- Falode, O.; Manuel, E. Wettability Effects on Capillary Pressure, Relative Permeability, and Irredcucible Saturation Using Porous Plate. J. Pet. Eng. 2014, 2014, 465418. [Google Scholar] [CrossRef] [Green Version]
- Heshmati, M.; Piri, M. Interfacial boundary conditions and residual trapping: A pore-scale investigation of the effects of wetting phase flow rate and viscosity using micro-particle image velocimetry. Fuel 2018, 224, 560–578. [Google Scholar] [CrossRef]
- Abdallah, W.; Buckley, J.; Carnegie, A.; Edwards, J.; Fordham, E. Fundamentals of Wettability. OilField Rev. 2007, 19, 44–45. [Google Scholar]
- Sadeghinezhad, E.; Siddiqui, M.A.Q.; Roshan, H.; Regenauer-Lieb, K. On the interpretation of contact angle for geomaterial wettability: Contact area versus three-phase contact line. J. Pet. Sci. Eng. 2020, 195, 107579. [Google Scholar] [CrossRef]
- Kafili Kasmaei, A.; Rao, D.N. Is Wettability Alteration the Main Cause for Enhanced Recovery in Low-Salinity Waterflooding? In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 12 April 2014. [Google Scholar]
- Li, S.; Genys, M.; Wang, K.; Torsæter, O. Experimental Study of Wettability Alteration during Nanofluid Enhanced Oil Recovery Process and Its Effect on Oil Recovery. In Proceedings of the SPE Reservoir Characterisation and Simulation Conference and Exhibition, Abu Dhabi, UAE, 14 September 2015; p. 11. [Google Scholar]
- Carpenter, C. A Study of Wettability-Alteration Methods With Nanomaterials Application. J. Pet. Technol. 2015, 67, 74–75. [Google Scholar] [CrossRef]
- Haeri, F.; Rao, D.N. Precise Wettability Characterization of Carbonate Rocks To Evaluate Oil Recovery Using Surfactant-Based Nanofluids. Energy Fuels 2019, 33, 8289–8301. [Google Scholar] [CrossRef]
- Dickinson, W.W.; Aravind, S.S.J.; Higgins, S.R.; Berg, S.; Suijkerbuijk, B.M.J.M.; Schniepp, H.C. Using atomic force spectroscopy to study oil/mineral interactions at reservoir temperatures and pressures. Fuel 2020, 259, 116194. [Google Scholar] [CrossRef]
- Li, L.; Sheng, J.J. Nanopore confinement effects on phase behavior and capillary pressure in a Wolfcamp shale reservoir. J. Taiwan Inst. Chem. Eng. 2017, 78, 317–328. [Google Scholar] [CrossRef]
- Alfarge, D.; Wei, M.; Bai, B. A Parametric Study on the Applicability of Miscible Gases Based EOR Techniques in Unconventional Liquids Rich Reservoirs. In Proceedings of the SPE Canada Unconventional Resources Conference, Calgary, AB, Canada, 13 March 2018. [Google Scholar]
- Pathak, M. Storage Mechanisms of Oil and Gas in Shales. In Encyclopedia of Petroleum Geoscience; Sorkhabi, R., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–6. [Google Scholar]
- Jin, Z.; Firoozabadi, A. Thermodynamic Modeling of Phase Behavior in Shale Media. SPE-124884-PA 2016, 21, 190–207. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Xu, L.; Lu, H.; Wang, H.; Shi, Y. Direct measurement of the contact angle of water droplet on quartz in a reservoir rock with atomic force microscopy. Chem. Eng. Sci. 2018, 177, 445–454. [Google Scholar] [CrossRef]
- Wu, J.; Liu, F.; Yang, H.; Xu, S.; Xie, Q.; Zhang, M.; Chen, T.; Hu, G.; Wang, J. Effect of specific functional groups on oil adhesion from mica substrate: Implications for low salinity effect. J. Ind. Eng. Chem. 2017, 56, 342–349. [Google Scholar] [CrossRef]
- Kumar, K.; Dao, E.K.; Mohanty, K.K. Atomic Force Microscopy Study of Wettability Alteration. In Proceedings of the SPE International Symposium on Oilfield Chemistry, The Woodlands, TX, USA, 1 January 2005; p. 11. [Google Scholar]
- Drelich, J.; Long, J.; Yeung, A. Determining Surface Potential of the Bitumen-Water Interface at Nanoscale Resolution using Atomic Force Microscopy. Can. J. Chem. Eng. 2007, 85, 625–634. [Google Scholar] [CrossRef]
- Hoo, C.M.; Starostin, N.; West, P.; Mecartney, M.L. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J. Nanoparticle Res. 2008, 10, 89–96. [Google Scholar] [CrossRef]
- Javadpour, F.; Moravvej Farshi, M.; Amrein, M. Atomic-Force Microscopy: A New Tool for Gas-Shale Characterization. SPE-134247-PA 2012, 51, 236–243. [Google Scholar] [CrossRef]
- Liu, K.; Ostadhassan, M.; Jabbari, H.; Bubach, B. Potential Application of Atomic Force Microscopy in Characterization of Nano-pore Structures of Bakken Formation. In Proceedings of the SPE Low Perm Symposium, Denver, CO, USA, 5 May 2016; p. 10. [Google Scholar]
- Hilner, E.; Andersson, M.P.; Hassenkam, T.; Matthiesen, J.; Salino, P.A.; Stipp, S.L.S. The effect of Ionic strength on oil adhesion in sandstone—the search for the low salinity mechanism. Sci. Rep. 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, S.; Mohanty, K.K. Effect of brine composition on oil-rock interaction by atomic force microscopy. J. Pet. Sci. Eng. 2018, 164, 289–301. [Google Scholar] [CrossRef]
- Leite, F.L.; Bueno, C.C.; Da Róz, A.L.; Ziemath, E.C.; Oliveira, O.N. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy. Int. J. Mol. Sci. 2012, 13, 12773–12856. [Google Scholar] [CrossRef]
- Heinz, W.F.; Hoh, J.H. Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. Nanotechnology 1999, 17, 143–150. [Google Scholar] [CrossRef]
- Butt, H.-J.; Cappella, B.; Kappl, M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf. Sci. Rep. 2005, 59, 1–152. [Google Scholar] [CrossRef] [Green Version]
- Mahani, H.; Sorop, T.; Ligthelm, D.J.; Brooks, D.; Vledder, P.; Mozahem, F.; Ali, Y. Analysis of field responses to low-salinity waterflooding in secondary and tertiary mode in Syria. In Proceedings of the SPE EUROPEC/EAGE Annual Conference and Exhibition, Vienna, Austria, 23–26 May 2011. [Google Scholar]
- Torsater, O.; Engeset, B.; Hendraningrat, L.; Suwarno, S. Improved Oil Recovery by Nanofluids Flooding: An Experimental Study. In Proceedings of the SPE Kuwait International Petroleum Conference and Exhibition, Kuwait City, Kuwait, 1 January 2012; p. 9. [Google Scholar]
- Bennetzen, M.V.; Mogensen, K. Novel Applications of Nanoparticles for Future Enhanced Oil Recovery. In Proceedings of the International Petroleum Technology Conference, Kuala Lumpur, Malaysia, 10 December 2014; p. 14. [Google Scholar]
- Afekare, D.A.; Radonjic, M. From Mineral Surfaces and Coreflood Experiments to Reservoir Implementations: Comprehensive Review of Low-Salinity Water Flooding (LSWF). Energy Fuels 2017, 31, 13043–13062. [Google Scholar] [CrossRef]
- Tetteh, J.T.; Alimoradi, S.; Brady, P.V.; Barati Ghahfarokhi, R. Electrokinetics at calcite-rich limestone surface: Understanding the role of ions in modified salinity waterflooding. J. Mol. Liq. 2019, 297, 111868. [Google Scholar] [CrossRef]
- Hanushevych, K.; Srivastava, V. Coalbed Methane: Places Of Origin, Perspectives Of Extraction, Alternative Methods Of Transportation With The Use Of Gas Hydrate And Nanotechnologies. Min. Miner. Depos. 2017, 11, 23–33. [Google Scholar] [CrossRef]
- Negin, C.; Ali, S.; Xie, Q. Application of nanotechnology for enhancing oil recovery—A review. Petroleum 2016, 2, 324–333. [Google Scholar] [CrossRef]
- Sheng, J.J. Critical review of low-salinity waterflooding. J. Pet. Sci. Eng. 2014, 120, 216–224. [Google Scholar] [CrossRef]
- Sheshdeh, M.J. A Review Study of Wettability Alteration Methods with Regard to Nano-Materials Application. In Proceedings of the SPE Bergen One Day Seminar, Bergen, Norway, 22 April 2015; p. 12. [Google Scholar]
- Fjelde, I.; Omekeh, A.V.; Sokama-Neuyam, Y.A. Low Salinity Water Flooding: Effect Of Crude Oil Composition. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 12–16 April 2014. [Google Scholar]
- McMillan, M.D.; Rahnema, H.; Romiluy, J.; Kitty, F.J. Effect of exposure time and crude oil composition on low-salinity water flooding. Fuel 2016, 185, 263–272. [Google Scholar] [CrossRef]
- Shahrabadi, A.; Bagherzadeh, H.; Roostaie, A.; Golghanddashti, H. Experimental Investigation of HLP Nanofluid Potential to Enhance Oil Recovery: A Mechanistic Approach. In Proceedings of the SPE International Oilfield Nanotechnology Conference and Exhibition, Noordwijk, The Netherlands, 1 January 2012; p. 9. [Google Scholar]
- Hendraningrat, L.; Li, S.; Torsater, O. A Coreflood Investigation of Nanofluid Enhanced Oil Recovery in Low-Medium Permeability Berea Sandstone. In Proceedings of the SPE International Symposium on Oilfield Chemistry, The Woodlands, TX, USA, 8 April 2013; p. 14. [Google Scholar]
- Ali, J.A.; Kolo, K.; Manshad, A.K.; Mohammadi, A.H. Recent advances in application of nanotechnology in chemical enhanced oil recovery: Effects of nanoparticles on wettability alteration, interfacial tension reduction, and flooding. Egypt. J. Pet. 2018, 27, 1371–1383. [Google Scholar] [CrossRef]
- Syfan, F.E.; Holcomb, D.L.; Lowrey, T.A.; Nickerson, R.L.; Sam, A.B.; Ahmad, Y. Enhancing Delaware Basin Stimulation Results Using Nanoparticle Dispersion Technology. In Proceedings of the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, TX, USA, 23 January 2018; p. 24. [Google Scholar]
- Afekare, D.A.; Garno, J.C.; Rao, D.N. Application of Force Spectroscopy to Evaluate Rock-Fluid Interactions at the Nanoscale. In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, Virtual, 20–22 July 2020; p. 20. [Google Scholar]
- Afekare, D.; Gupta, I.; Rao, D. Nanoscale investigation of silicon dioxide nanofluids and implications for enhanced oil recovery—An atomic force microscope study. J. Pet. Sci. Eng. 2020, 191, 107165. [Google Scholar] [CrossRef]
- Hassenkam, T.; Mathiesen, J.; Pedersen, C.; Dalby, K.; Stipp, S.; Collins, I.R. Observation of the Low Salinity Effect by Atomic Force Adhesion Mapping on Reservoir Sandstones. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 1 January 2012; p. 14. [Google Scholar]
- Hackley, P.C.; Dennen, K.O.; Garza, D.; Lohr, C.D.; Valentine, B.J.; Hatcherian, J.J.; Enomoto, C.B.; Dulong, F.T. Oil-source rock correlation studies in the unconventional Upper Cretaceous Tuscaloosa marine shale (TMS) petroleum system, Mississippi and Louisiana, USA. J. Pet. Sci. Eng. 2020, 190, 107015. [Google Scholar] [CrossRef]
- Hendraningrat, L.; Li, S.; Torsæter, O. A coreflood investigation of nanofluid enhanced oil recovery. J. Pet. Sci. Eng. 2013, 111, 128–138. [Google Scholar] [CrossRef]
- Mascle, M.; Youssef, S.; Deschamps, H.; Vizika, O. In-Situ Investigation of Aging Protocol Effect on Relative Permeability Measurements Using High-Throughput Experimentation Methods. Petrophysics 2019, 60, 514–524. [Google Scholar] [CrossRef]
- Hendraningrat, L.; Torsæter, O. Metal oxide-based nanoparticles: Revealing their potential to enhance oil recovery in different wettability systems. Appl. Nanosci. 2015, 5, 181–199. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Torsæter, O. The Impact of Nanoparticles Adsorption and Transport on Wettability Alteration of Water Wet Berea Sandstone. In Proceedings of the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Nusa Dua, Bali, Indonesia, 20 October 2015; p. 11. [Google Scholar]
- Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Xie, Q.; Chen, Y.; You, L.; Hossain, M.M.; Saeedi, A. Drivers of Wettability Alteration for Oil/Brine/Kaolinite System: Implications for Hydraulic Fracturing Fluids Uptake in Shale Rocks. Energies 2018, 11, 1666. [Google Scholar] [CrossRef] [Green Version]
- Lashkarbolooki, M.; Ayatollahi, S. Investigating injection of low salinity brine in carbonate rock with the assist of works of cohesion and adhesion and spreading coefficient calculations. J. Pet. Sci. Eng. 2018, 161, 381–389. [Google Scholar] [CrossRef]
- Nguyen, D.; Phan, T.; Hsu, T.-P.; Phan, J. Adhesion and surface energy of shale rocks. Colloids Surf. A Physicochem. Eng. Asp. 2017, 520, 712–721. [Google Scholar] [CrossRef]
- Andersen, S.I.; Chandra, M.S.; Chen, J.; Zeng, B.Y.; Zou, F.; Mapolelo, M.; Abdallah, W.; Buiting, J.J. Detection and Impact of Carboxylic Acids at the Crude Oil-Water Interface. Energy Fuels 2016, 30, 4475–4485. [Google Scholar] [CrossRef]
- Zhang, J. Work of Adhesion and Work of Cohesion. In Encyclopedia of Tribology; Wang, Q.J., Chung, Y.-W., Eds.; Springer US: Boston, MA, USA, 2013; pp. 4127–4132. [Google Scholar]
- Chengara, A.; Nikolov, A.D.; Wasan, D.T.; Trokhymchuk, A.; Henderson, D. Spreading of nanofluids driven by the structural disjoining pressure gradient. J. Colloid Interface Sci. 2004, 280, 192–201. [Google Scholar] [CrossRef]
- Johnson, K.L.; Kendall, K.; Roberts, A.D. Surface Energy and the Contact of Elastic Solids. Proc. R. Soc. Lond. Ser. A 1971, 324, 301–313. [Google Scholar] [CrossRef] [Green Version]
- Derjaguin, B.V.; Muller, V.M.; Toporov, Y.P. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 1975, 53, 314–326. [Google Scholar] [CrossRef]
- Lorenz, B.; Ceccato, M.; Andersson, M.P.; Dobberschütz, S.; Rodriguez-Blanco, J.D.; Dalby, K.N.; Hassenkam, T.; Stipp, S.L.S. Salinity-Dependent Adhesion Response Properties of Aluminosilicate (K-Feldspar) Surfaces. Energy Fuels 2017, 31, 4670–4680. [Google Scholar] [CrossRef]
- Israelachvili, J.N. Intermolecular and Surface Forces; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Lee, S.Y.; Webb, K.J.; Collins, I.; Lager, A.; Clarke, S.; O'Sullivan, M.; Routh, A.; Wang, X. Low Salinity Oil Recovery: Increasing Understanding of the Underlying Mechanisms. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 1 January 2010. [Google Scholar]
- Wasan, D.; Nikolov, A.; Kondiparty, K. The wetting and spreading of nanofluids on solids: Role of the structural disjoining pressure. Curr. Opin. Colloid Interface Sci. 2011, 16, 344–349. [Google Scholar] [CrossRef]
Brine Solutions | Salts | Concentrations (ppm) | Total Dissolved Solids (ppm) |
---|---|---|---|
Formation brine (HS) | NaCl | 60,000 | 72,800 |
CaCl2 | 10,000 | ||
KCl | 2650 | ||
MgCl2 | 150 | ||
Low salinity water at 5000 ppm (LS) | NaCl | 4120 | 5000 |
CaCl2 | 690 | ||
KCl | 180 | ||
MgCl2 | 10 | ||
Low salinity water at 5000 ppm, without divalent cations (LSWOMC) | NaCl | 4120 | 5000 |
KCl | 880 |
Nanofluids | Concentrations (wt% in 1 wt% NaCl) | pH | Purity (%) |
---|---|---|---|
Hydrophilic silicon dioxide nanoparticles (HNP) | 0.05 | 7.66 | 99.99 |
0.1 | 8.66 | 99.99 | |
0.5 | 8.28 | 99.99 | |
1 | 8.52 | 99.99 |
Non-Polar Thiol Solutions | Functional Group | Molecular Wt. (g/gmol) | Density (g/mL) | Purity (%) | Boiling Point (°C) |
---|---|---|---|---|---|
1-Undecanethiol—CH3(CH2)9CH2SH | Alkyl | 188.37 | 0.841 | 98 | 103–104 |
2-Phenylethanethiol—C6H5CH2CH2SH | Aromatics | 138.23 | 1.032 | 98 | 217–218 |
Polar Thiol Powder | Functional Group | Molecular Wt. (g/gmol) | Flash point (°C) | Purity (%) | Melting point (°C) |
11-Mercaptoundecanoic acid—COOH(CH2)9CH2SH | Carboxyl | 218.36 | >110 | 95 | 46–50 |
Interaction | HS (Reference) | LS | LSWOMC | Maximum Reduction (%) | Maximum Reduction in Fadh (%) |
---|---|---|---|---|---|
-CH3 tip on mica | 17.5 | 8 | 0.6 | 97% | 81% |
-C6H5 tip on mica | 0.3 | 5.9 × 10−2 | 5.8 × 10−2 | 81% | 55% |
Interaction | AFB (Reference) | 1 wt% NaCl | 0.05 wt% HNP | 0.1 wt% HNP | 0.5 wt% HNP | 1 wt% HNP | Maximum Reduction (%) | Maximum Reduction in Fadh (%) |
---|---|---|---|---|---|---|---|---|
-CH3 tip on mica | 1 | 1.2 | 4.4 × 10−2 | 3.7 × 10−2 | 5.3 × 10−3 | 9.6 × 10−2 | 99% | 93% |
-C6H5 tip on mica | 1.9 | 3.4 | 6.1 × 10−2 | 3.1 × 10−2 | 1.7 × 10−2 | 3.2 × 10−2 | 99% | 90% |
-COOH tip on mica | 5.5 | 67.2 | 2.7 | 1.5 | 1.0 | 0.1 | 98% | 89% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afekare, D.; Garno, J.C.; Rao, D. Insights into Nanoscale Wettability Effects of Low Salinity and Nanofluid Enhanced Oil Recovery Techniques. Energies 2020, 13, 4443. https://doi.org/10.3390/en13174443
Afekare D, Garno JC, Rao D. Insights into Nanoscale Wettability Effects of Low Salinity and Nanofluid Enhanced Oil Recovery Techniques. Energies. 2020; 13(17):4443. https://doi.org/10.3390/en13174443
Chicago/Turabian StyleAfekare, Dayo, Jayne C. Garno, and Dandina Rao. 2020. "Insights into Nanoscale Wettability Effects of Low Salinity and Nanofluid Enhanced Oil Recovery Techniques" Energies 13, no. 17: 4443. https://doi.org/10.3390/en13174443
APA StyleAfekare, D., Garno, J. C., & Rao, D. (2020). Insights into Nanoscale Wettability Effects of Low Salinity and Nanofluid Enhanced Oil Recovery Techniques. Energies, 13(17), 4443. https://doi.org/10.3390/en13174443