Reservoir Characteristics of the Lower Jurassic Lacustrine Shale in the Eastern Sichuan Basin and Its Effect on Gas Properties: An Integrated Approach
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Experiments
4. Results and Discussions
4.1. Organic Geochemical Characteristics
4.2. Reservoir Characteristics
4.2.1. Mineral Composition and Reservoir Properties
4.2.2. Pore Morphology and Pore Structure Analysis
4.3. Methane Sorption and Adsorption Potential
4.4. Gas Content of Field Desorption
5. Conclusions
- (1)
- The lacustrine Da’anzhai member shale in the north Fuling area has a medium-high OM content (avg. TOC 1.12 wt.%). The laminated calcareous shale in the upper part of the J1zDa2 has high TOC value of avg. 1.58 wt.%. The average potential yield P (S1 + S2) and chloroform bitumen content “A” are 2.34 mg hydrocarbons per g TOC and 0.11% with a medium hydrogen generation potential. The kerogen type of mainly typeII2 and a moderate OM maturity (VR = avg. 1.19) indicate a huge potential of gas generation. The mineral content is dominated by calcite, clay and quartz. The clay minerals mainly consist of illite and mixed-layerillite/smectite. The lithofacies of the Da’anzhai member includes marl (ML), calcareous shale (CS), argillaceous shale (AS), muddy siltstone (MS), and silty shale (SS).
- (2)
- Heterogeneity of shale lithofacies strongly influences the reservoir quality. The porosity and permeability of shale is overall low, but the laminated calcareous shale has good reservoir properties with a high porosity (avg. 4.72%). The pore size is dominated by mesopores, and the medium pore diameter is 23.2 nm. Better NMR data show that the small pores with the transverse relaxation time of 0.6–1 ms and 1–3 ms comprised most of the porosity of the Da’anzhai shale member, while the larger pores with a T2 value of 300–1000 ms and 1000–3000 ms only accounts for a small porosity proportion. However, it is very important for gas migration and generally showed a third peak in the NMR spectrum of CS, and this peak generally missed after centrifuge processing.
- (3)
- The clay minerals in Da’anzhai member shale contributes most to surface area. The average Langmuir volume and total gas content is 1.7 mL/g and 1.04 m3/t. The adsorption capacity of methane decreases with decreasing TOC and increasing temperature. The total gas content of lacustrine shale is controlled by TOC and porosity. CS have the highest gas content (avg. 1.57 m3/t) than other shale lithofacies. The reservoir properties, mineral composition and gas content data suggest the laminated calcareous shale in the medium-upper section of the J1zDa2 are the most advantage lithofacies for shale gas potential production.
Author Contributions
Funding
Conflicts of Interest
References
- Wei, X.F.; Huang, J.; Li, Y.P.; Wang, Q.B.; Liu, R.B.; Wen, Z.D. The main factors controlling the enrichment and high production of Da’anzhai member continental shale gas in Yuanba area. Geolog. China 2014, 41, 970–981. [Google Scholar]
- Nie, H.K.; He, Z.L.; Liu, G.X.; Zhang, G.R.; Lu, Z.Y.; Li, D.H.; Sun, C.X. Status and direction of shale gas exploration and development in China. J. China Univ. Mining Technol. 2020, 49, 13–35. [Google Scholar]
- Xu, Q.L.; Liu, B.; Ma, Y.S.; Song, X.; Wang, Y.; Chen, Z. Geological and geochemical characterization of lacustrine shale: A case study of the Jurassic Da’anzhai member shale in the central Sichuan Basin, southwest China. J. Nat. Gas. Sci. Eng. 2017, 47, 124–139. [Google Scholar] [CrossRef]
- Long, L.Y.; Zhang, Y.Z.; Wang, Y.J.; Wang, L.G. The pore structure of tight limestone-Jurassic Ziliujing Formation, Central Sichuan Basin, China. App. Geophys. 2018, 15, 165–174. [Google Scholar]
- Chen, L.; Jiang, Z.X.; Liu, Q.X.; Jiang, S.; Liu, K.; Tan, J.; Gao, F. Mechanism od shale gas occurrence: Insights from comparative study on pore structures of marine and lacustrine shales. Mar. Pet. Geol. 2019, 104, 200–216. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, W.; Hu, Q.H.; Xia, X.H.; Zhang, C.; Zhang, H.T. Fluid distribution and gas adsorption behaviors in over-mature shales in southern China. Mar. Pet. Geol. 2019, 109, 223–232. [Google Scholar] [CrossRef]
- Zhai, G. Petroleum Geology of China; Petroleum Industry Press: Beijing, China, 1997. [Google Scholar]
- Gao, J.; Wang, X.; He, S.; Guo, X.; Zhang, B.; Chen, X. Geochemical characteristics and source correlation of natural gas in Jurassic shales in the North Fuling area, Eastern Sichuan Basin, China. J. Pet. Sci. Eng. 2017, 158, 284–292. [Google Scholar] [CrossRef]
- Coates, G.R.; Xiao, L.; Prammer, M.G. Nmr Logging: Principles and Applications; Haliburton Energy Services: Houston, TX, USA, 1999. [Google Scholar]
- Neto, A.C.; Guinea, F.; Peres, N.M.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109. [Google Scholar] [CrossRef] [Green Version]
- Testamanti, M.N.; Rezaee, R. Determination of Nmr T2 cut-off for clay bound water in shales: A case study of Carynginia Formation, Perth Basin, Western Australia. J. Pet. Sci. Eng. 2017, 149, 497–503. [Google Scholar] [CrossRef]
- Yao, G.H.; Wang, X.Q.; Du, H.Y.; Yi, W.; Guo, M.; Xiang, R.; Li, Z. Applicability of USBM method in the test on shale gas content. Acta Pet. Sin. 2016, 37, 802–806. [Google Scholar]
- Milad, B.; Slatt, R. Outcrop subsurface reservoir characterization of the Mississippian Sycamore/Meramec play in the SCOOP area, Arbuckle mountains, Oklahoma, USA. In Proceedings of the Unconventional Resource Technology Conference, Denver, CO, USA, 22–24 July 2019. [Google Scholar]
- Tissot, B.P.; Welte, D.H. Petroleum Formation and Occurrence, 2nd ed.; Springer-Verlag: Heidelberg/Berlin, Germany, 1984; p. 699. [Google Scholar]
- Huang, D.F.; Li, J.C.; Zhang, D.J. Evolution and Hydrocarbon Generation Mechanisms of Terrestrial Organic Matter; Petroleum Industry Press: Beijing, China, 1984; pp. 1–228. [Google Scholar]
- Schnyder, J.; Dejax, J.; Keppens, E.; Tu, T.T.N.; Spagna, P.; Boulila, S.; Galbrun, B.; Riboulleau, A.; Tshibangu, J.P.; Yans, J. An Early Cretaceous lacustrine record: Organic matter and organic carbon isotopes at Bernissart (Mons Basin, Belgium). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 281, 79–91. [Google Scholar] [CrossRef]
- Taylor, G.H.; Teichmüller, M.; Davis, A.; Diessel, C.F.K.; Littke, R.; Robert, P. Organic Petrology; Schweitzerbart: Stuttgart, Germany, 1998; pp. 1–704. [Google Scholar]
- Xu, H.; Zhou, W.; Zhang, R.; Liu, S.M.; Zhou, Q.M. Characterizations of pore, mineral and petrographic properties of marine shale using multiple techniques and their implications on gas storage capability for Sichuan longmaxi gas shale field in China. Fuel 2019, 241, 360–371. [Google Scholar] [CrossRef]
- Rickman, R.; Mullen, M.J.; Petre, J.E.; Grieser, W.V.; Kundert, D. A Practical Use of Shale Petrophysics for Stimulation Design Optimization: All Shale Plays Are Not Clones of the Barnett Shale; Society of Petroleum Engineers: Denver, CO, USA, 2008. [Google Scholar]
- Kapur, G.; Findeisen, M.; Berger, S. Analysis of hydrocarbon mixtures by diffusion-ordered Nmr spectroscopy. Fuel 2000, 79, 1347–1351. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Pan, L.; Xiao, X.M.; Wilkins, R.W.T.; Meng, Z.P.; Huang, B.J. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE-SEM methods. Mar. Pet. Geol. 2013, 48, 8–19. [Google Scholar] [CrossRef]
- Milad, B.; Slatt, R.; Fuge, Z. Lithology, stratigraphy, chemostratigraphy, and depositional environment of the Mississippian Sycamore rock in the SCOOP and STACK area, Oklahoma, USA: Field, lab, and machine learning studies on outcrops and subsurface wells. Mar. Pet. Geol. 2020, 115, 1–18. [Google Scholar] [CrossRef]
- Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull. 2007, 91, 475–499. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Petrol. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, T.; Milliken, K.L.; Qu, J.; Zhang, X. Experimental investigation of main controls to methane adsorption in clay-rich rocks. Appl. Geochem. 2012, 27, 2533–2545. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.F.; Li, S.T.; Ji, H.T.; Xu, Z.J.; Luo, Z.H.; Xu, T.; Li, L.Z. The forming mechanism and process of tight oil sand reservoirs: A case study of Chang 8 oil layers of the Upper Triassic Yanchang Formation in the western Jiyuan area of the Ordos Basin, China. J. Pet. Sci. Eng. 2017, 158, 29–46. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 143, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Polanyi, M. The potential theory of adsorption. Science 1963, 141, 1010–1013. [Google Scholar] [CrossRef] [PubMed]
Sample | TOC (wt.%) | Clay (wt.%) | Carbonate (wt.%) | Quartz (wt.%) | Pyrite (wt.%) | I/S (wt.%) | Illite (wt.%) | Kaolinite (wt.%) | Chlorite (wt.%) | Surface Area (m2/g) | Pore Volume (cm3/100g) | Porosity (%) | Permeability (mD) | Average Pore Size (nm) | Medium Pore Size (nm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FY-1 | 0.56 | 8.7 | 75.6 | 7.4 | 1.6 | 2 | 3.04 | 1.83 | 1.83 | 1.76 | 1.09 | 0.8 | 0.103 | 62.50 | 41.7 |
FY-2 | 1.31 | 27.4 | 47.5 | 15.6 | 6.9 | 8.22 | 9.86 | 4.38 | 4.93 | 5.69 | 3.33 | 2.6 | 0.965 | 49.27 | 4.7 |
FY-3 | 1.89 | 22.7 | 55 | 15.7 | 3.8 | 6.13 | 6.81 | 5.22 | 4.54 | 3.80 | 2.55 | 2 | 0.097 | 49.80 | 36 |
FY-4 | 1.36 | 50.6 | 11.4 | 26.4 | 4.6 | 24.79 | 15.18 | 5.06 | 5.57 | 8.79 | 0.35 | 0.6 | 28.79 | 41.51 | 18 |
FY-5 | 0.81 | 9.5 | 79.5 | 6.8 | 2.7 | 2.57 | 3.61 | 1.52 | 1.81 | 2.19 | 2.09 | 1.6 | 0.083 | 80 | 22.5 |
FY-6 | 0.96 | 37.6 | 28.3 | 27 | 2.1 | 13.54 | 11.66 | 4.89 | 7.52 | 2.65 | 2.58 | 2 | 0.638 | 57.97 | 15.4 |
FY-7 | 1.23 | 22.8 | 54.8 | 15.8 | 2.2 | 6.384 | 9.58 | 3.88 | 2.96 | 3.36 | 2.72 | 2.1 | 0.961 | 170.21 | 102.3 |
FY-8 | 0.77 | 35.7 | 20.1 | 35.3 | 2.4 | 13.21 | 9.99 | 7.14 | 5.36 | 2.86 | 0.9 | 0.7 | 0.142 | 38.67 | 9.9 |
FY-9 | 1.21 | 50 | 19 | 24.5 | 1.4 | 15.5 | 15 | 10.5 | 9 | 3.71 | 4.44 | 3.5 | 9.79 | 35.00 | 7.2 |
FY-10 | 0.41 | 48.3 | 0 | 32.4 | 0 | 16.91 | 11.59 | 11.59 | 8.21 | 1.66 | 3.05 | 2.4 | 1.07 | 39.71 | 4.9 |
FY-11 | 0.33 | 12.7 | 76.1 | 11.2 | 0 | 3.18 | 2.54 | 3.05 | 3.94 | 1.42 | 2.16 | 1.7 | 0.565 | 31.06 | 9.7 |
FY-12 | 0.2 | 51.1 | 17.7 | 31.2 | 0 | 20.44 | 15.84 | 9.71 | 5.11 | 13.92 | 0.67 | 0.7 | 0.205 | 21.85 | 4.6 |
FY-13 | 0.61 | 46.3 | 10.3 | 40.5 | 0 | 19.45 | 15.28 | 6.95 | 4.63 | 12.62 | 1.12 | 0.9 | 0.073 | 17.78 | 4.2 |
FY-14 | 0.67 | 44.7 | 10.5 | 42.6 | 0 | 19.22 | 13.41 | 6.71 | 5.36 | 4.47 | 7.01 | 5.6 | 0.323 | 9 | 6.5 |
FY-15 | 0.49 | 45.3 | 18.6 | 32.2 | 1.8 | 19.48 | 16.31 | 5.44 | 4.08 | 9.47 | 4.7 | 5.9 | 9.02 | 163.73 | 100.9 |
FY-16 | 0.27 | 21.9 | 17.8 | 55.2 | 0 | 7.67 | 5.69 | 4.59 | 3.94 | 5.51 | 2.56 | 2 | 0.126 | 25 | 2.7 |
FY-17 | 0.26 | 48.3 | 18.6 | 31.4 | 0 | 18.84 | 14.97 | 9.66 | 4.83 | 11.91 | 2.25 | 1.7 | 0.154 | 27.44 | 4.5 |
FY-18 | 1.29 | 62.4 | 8.8 | 23.7 | 1.6 | 21.84 | 24.96 | 10.61 | 4.99 | 8.73 | 3.22 | 2.5 | 4.65 | 46.94 | 6.5 |
Lithfacies Type | The Peak of T2 Distribution (ms) | Capillary Bound Water Volume (avg. %) | Movable Water Volume (avg. %) | Effective Porosity (avg. %) | Total Porosity (avg. %) |
---|---|---|---|---|---|
CS | 3–30, 60–300, 1000 | 2.3 | 0.6 | 2.5 | 4.9 |
AS | 3–30, 30–100 | 1.5 | 0.4 | 1.8 | 2.1 |
SS | 1–3 3–30 | 1.2 | 0.3 | 1.3 | 1.8 |
MS | 0.3–3, 3–10 | 0.6 | 0.2 | 0.9 | 1.2 |
ML | 0.3–3 | 0.3 | 0 | 0.5 | 0.9 |
Sample | TOC (wt.%) | Porosity (%) | Langmuir Volume (mL/g) | Langmuir Pressure (MPa) | Desorption Gas Content (m3/t) | Lost Gas Content (m3/t) | Residual Gas Content (m3/t) | Total Gas Content (m3/t) |
---|---|---|---|---|---|---|---|---|
FY-1 | 0.56 | 0.8 | / | / | 0.04 | 0.19 | 0 | 0.23 |
FY-3 | 1.89 | 2.0 | / | / | 0.19 | 1.51 | 0.1 | 1.8 |
FY-4 | 1.48 | 0.6 | 1.77 | 2.01 | 0.19 | 1.27 | 0.12 | 1.58 |
FY-6 | 0.96 | 2.0 | / | / | 0.14 | 0.11 | 0.09 | 0.34 |
FY-7 | 1.31 | 2.1 | 2.28 | 2.46 | 0.22 | 0.85 | 0.07 | 1.14 |
FY-8 | 0.77 | 0.7 | 1.66 | 2.39 | 0.1 | 0.06 | 0.08 | 0.24 |
FY-9 | 1.21 | 3.5 | / | / | 0.11 | 0.02 | 0.01 | 0.14 |
FY-10 | 0.41 | 2.4 | 1.34 | 2.42 | 0.13 | 0.07 | 0.06 | 0.26 |
FY-13 | 0.61 | 0.9 | / | / | 0.12 | 0.32 | 0.05 | 0.49 |
FY-14 | 0.67 | 5.6 | / | / | 0.1 | 0.24 | 0.05 | 0.39 |
FY-15 | 0.49 | 5.9 | / | / | 0.17 | 0.66 | 0.06 | 0.89 |
FY-16 | 0.27 | 2.0 | / | / | 0.09 | 0.39 | 0.04 | 0.52 |
FY-17 | 0.26 | 1.7 | / | / | 0.15 | 0.45 | 0 | 0.6 |
XL-1 | 1.44 | 4.6 | / | / | 0.31 | 0.08 | 1.16 | 1.55 |
XL-2 | 1.87 | 8.2 | / | / | 0.38 | 0.15 | 1.37 | 1.9 |
XL-3 | 3.06 | 3.8 | / | / | 0.35 | 0.03 | 1.91 | 2.29 |
XL-4 | 1.41 | 7.6 | / | / | 0.38 | 0.06 | 1.24 | 1.68 |
XL-5 | 1.22 | 4.8 | / | / | 0.28 | 0.13 | 0.49 | 0.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Deng, H.; Ma, R.; Wang, R.; Wang, Y.; Li, A. Reservoir Characteristics of the Lower Jurassic Lacustrine Shale in the Eastern Sichuan Basin and Its Effect on Gas Properties: An Integrated Approach. Energies 2020, 13, 4495. https://doi.org/10.3390/en13174495
He J, Deng H, Ma R, Wang R, Wang Y, Li A. Reservoir Characteristics of the Lower Jurassic Lacustrine Shale in the Eastern Sichuan Basin and Its Effect on Gas Properties: An Integrated Approach. Energies. 2020; 13(17):4495. https://doi.org/10.3390/en13174495
Chicago/Turabian StyleHe, Jianhua, Hucheng Deng, Ruolong Ma, Ruyue Wang, Yuanyuan Wang, and Ang Li. 2020. "Reservoir Characteristics of the Lower Jurassic Lacustrine Shale in the Eastern Sichuan Basin and Its Effect on Gas Properties: An Integrated Approach" Energies 13, no. 17: 4495. https://doi.org/10.3390/en13174495
APA StyleHe, J., Deng, H., Ma, R., Wang, R., Wang, Y., & Li, A. (2020). Reservoir Characteristics of the Lower Jurassic Lacustrine Shale in the Eastern Sichuan Basin and Its Effect on Gas Properties: An Integrated Approach. Energies, 13(17), 4495. https://doi.org/10.3390/en13174495