Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy
Abstract
:1. Introduction
1.1. Prior Research
1.2. Background
1.3. Features Related to the 2GDH in Scientific Literature
1.4. Local Specificities
1.5. Aim
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
β | Local heat loss factor |
d | Pipe dimensions (diameter), m |
h | Heat transfer coefficient, W/m2·K |
k | Thermal conductivity, W/m·K |
L | Length, m |
P | Heat load (production), MW |
q | Hourly heat loss, W/m |
Q | Heat loss, W |
r | Radius of the pipe, m |
R | Thermal resistance (R-value), m2·K/W |
τ | Daily average supply/return temperature, K |
T | Temperature, K |
U | Overall heat transfer coefficient, W/m2·K |
Z | Pipe centerline depth (below the surface), m |
Superscripts | |
av.a | Average annual |
Subscripts | |
1 | Steel |
2 | Insulation layer |
3 | Casing and soil |
c | Current |
conv.i | Convective from insulation |
d | Design |
i | Inner |
loss | Heat loss if the proposed method is applied |
o | Outer |
r | Return |
s | Supply |
soil | Soil |
References
- Lund, H.; Duic, N.; Østergaard, P.A.; Mathiesen, B.V. Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating. Energy 2018, 165, 614–619. [Google Scholar] [CrossRef]
- Lund, H.; Østergaard, P.A.; Chang, M.; Werner, S.; Svendsen, S.; Sorknæs, P.; Thorsen, J.E.; Hvelplund, F.; Mortensen, B.O.G.; Mathiesen, B.V.; et al. The status of 4th generation district heating: Research and results. Energy 2018, 164, 147–159. [Google Scholar] [CrossRef]
- Wirtz, M.; Kivilip, L.; Remmen, P.; Müller, D. 5th Generation District Heating: A novel design approach based on mathematical optimization. Appl. Energy 2020, 260, 114158. [Google Scholar] [CrossRef]
- Chicherin, S. Low-temperature district heating distributed from transmission-distribution junctions to users: energy and environmental modelling. Energy Procedia 2018, 147, 382–389. [Google Scholar] [CrossRef]
- Volkova, A.; Mašatin, V.; Siirde, A. Methodology for evaluating the transition process dynamics towards 4th generation district heating networks. Energy 2018, 150, 253–261. [Google Scholar] [CrossRef]
- Krawczyk, D.A.; Teleszewski, T.J. Reduction of heat losses in a pre-insulated network located in central Poland by lowering the operating temperature of the water and the use of egg-shaped thermal insulation: A case study. Energies 2019, 12, 2104. [Google Scholar] [CrossRef] [Green Version]
- Tunzi, M.; Boukhanouf, R.; Li, H.; Svendsen, S.; Ianakiev, A. Improving thermal performance of an existing UK district heat network: A case for temperature optimization. Energy Build. 2018, 158, 1576–1585. [Google Scholar] [CrossRef]
- Schweiger, G.; Larsson, P.-O.; Magnusson, F.; Lauenburg, P.; Velut, S. District heating and cooling systems—Framework for Modelica-based simulation and dynamic optimization. Energy 2017, 137, 566–578. [Google Scholar] [CrossRef]
- Chicherin, S.; Junussova, L.; Junussov, T. Minimizing the supply temperature at the district heating plant-dynamic optimization. E3S Web Conf. 2019, 118, 02004. [Google Scholar] [CrossRef]
- Dalla Rosa, A.; Li, H.; Svendsen, S. Method for optimal design of pipes for low-energy district heating, with focus on heat losses. Energy 2011, 36, 2407–2418. [Google Scholar] [CrossRef]
- Masatin, V.; Latõšev, E.; Volkova, A. Evaluation factor for district heating network heat loss with respect to network geometry. Energy Procedia 2016, 95, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Vivian, J.; Emmi, G.; Zarrella, A.; Jobard, X.; Pietruschka, D.; De Carli, M. Evaluating the cost of heat for end users in ultra low temperature district heating networks with booster heat pumps. Energy 2018. [Google Scholar] [CrossRef]
- Turski, M.; Sekret, R. Buildings and a district heating network as thermal energy storages in the district heating system. Energy Build. 2018, 179, 49–56. [Google Scholar] [CrossRef]
- Hammer, A.; Sejkora, C.; Kienberger, T. Increasing district heating networks efficiency by means of temperature-flexible operation. Sustain. Energy Grids Netw. 2018, 16, 393–404. [Google Scholar] [CrossRef]
- Chicherin, S.V. Comparison of a district heating system operation based on actual data—Omsk city, Russia, case study. Int. J. Sustain. Energy 2019, 38, 603–614. [Google Scholar] [CrossRef]
- Noussan, M.; Jarre, M.; Poggio, A. Real operation data analysis on district heating load patterns. Energy 2017, 129, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Lund, H.; Werner, S.; Wiltshire, R.; Svendsen, S.; Thorsen, E.J.; Hvelplund, F.; Mathiesm, V.B. 4th Generation District Heating (4GDH). Integrating smart thermal grids into future sustainable energy systems. Energy 2014, 68, 1–11. [Google Scholar] [CrossRef]
- Heat Supply Project City District ‘Palana Village’ Tigil District of Kamchatsk Region for the Period until 2034 (Updated Version). Available online: https://www.palana.org/sites/default/files/shema_teplosnabzheniya_utverzhdaemaya_chast.pdf (accessed on 4 August 2020).
- Lukić, N.; Jurišević, N.; Nikolić, N.; Gordić, D. Specific heating consumption in the residential sector of Serbia—Example of the city of Kragujevac. Energy Build. 2015, 107, 163–171. [Google Scholar] [CrossRef]
- Čulig-Tokić, D.; Krajačić, G.; Doračić, B.; Krklec, R.; Larsen, J.M. Comparative analysis of the district heating systems of two towns in Croatia and Denmark. Energy 2015, 92, 435–443. [Google Scholar] [CrossRef]
- Zhang, L.; Gudmundsson, O.; Li, H.; Svendsen, S. Comparison of district heating systems used in China and Denmark. Int. J. Sustain. Green Energy 2015, 4, 102–116. [Google Scholar]
- Andrić, I.; Fournier, J.; Lacarrière, B.; Le Corre, O.; Ferrão, P. The impact of global warming and building renovation measures on district heating system techno-economic parameters. Energy 2018. [Google Scholar] [CrossRef]
- Coss, S.; Verda, V.; Le-Corre, O. Multi-objective optimization of District Heating Network model and assessment of Demand Side Measures using the load deviation index. J. Clean. Prod. 2018. [Google Scholar] [CrossRef]
- Badami, M.; Fonti, A.; Carpignano, A.; Grosso, D. Design of district heating networks through an integrated thermo-fluid dynamics and reliability modelling approach. Energy 2018, 144, 826–838. [Google Scholar] [CrossRef]
- Cai, H.; You, S.; Wang, J.; Bindner, H.W.; Klyapovskiy, S. Technical assessment of electric heat boosters in low-temperature district heating based on combined heat and power analysis. Energy 2018, 150, 938–949. [Google Scholar] [CrossRef] [Green Version]
- Brange, L.; Englund, J.; Lauenburg, P. Prosumers in district heating networks—A Swedish case study. Appl. Energy 2016, 164, 492–500. [Google Scholar] [CrossRef]
- Shan, X.; Wang, P.; Lu, W. The reliability and availability evaluation of repairable district heating networks under changeable external conditions. Appl. Energy 2017, 203, 686–695. [Google Scholar] [CrossRef]
- Babiarz, B.; Blokus-Roszkowska, A. Probabilistic model of district heating operation process in changeable external conditions. Energy Build. 2015, 103, 159–165. [Google Scholar] [CrossRef]
- Chicherin, S.; Junussova, L.; Junussov, T. The hydro-seeding and concrete anchors as a method for preventing damage to district heating network by local landslides. E3S Web Conf. 2019, 140, 05014. [Google Scholar] [CrossRef] [Green Version]
- von Rhein, J.; Henze, G.P.; Long, N.; Fu, Y. Development of a topology analysis tool for fifth-generation district heating and cooling networks. Energy Convers. Manag. 2019, 196, 705–716. [Google Scholar] [CrossRef]
- Volkova, A.; Krupenski, I.; Ledvanov, A.; Hlebnikov, A.; Lepiksaar, K.; Latõšov, E.; Mašatin, V. Energy cascade connection of a low-temperature district heating network to the return line of a high-temperature district heating network. Energy 2020, 198, 117304. [Google Scholar] [CrossRef]
- Chicherin, S.; Junussova, L.; Junussov, T. Advanced control of a district heating system with high residential domestic hot water demand. E3S Web Conf. 2020, 160, 01004. [Google Scholar] [CrossRef]
- Order of the Ministry of Energy of the Russian Federation dated 30 December 2008 No 325. On Approval of the Procedure for Determining Technological Standards Losses during the Transfer of Thermal Energy, Coolant. Available online: http://base.garant.ru/70271472/ (accessed on 4 August 2020).
- Wang, H.; Meng, H.; Zhu, T. New model for onsite heat loss state estimation of general district heating network with hourly measurements. Energy Convers. Manag. 2018, 157, 71–85. [Google Scholar] [CrossRef]
- Incropera, F.P. Fundamentals of Heat and Mass Transfer; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Arabkoohsar, A.; Alsagri, A.S. A new generation of district heating system with neighborhood-scale heat pumps and advanced pipes, a solution for future renewable-based energy systems. Energy 2020, 193, 116781. [Google Scholar] [CrossRef]
- Farouq, S.; Byttner, S.; Bouguelia, M.-R.; Nord, N.; Gadd, H. Large-scale monitoring of operationally diverse district heating substations: A reference-group based approach. Eng. Appl. Artif. Intell. 2020, 90, 103492. [Google Scholar] [CrossRef]
- Chicherin, S.; Volkova, A.; Latõšov, E. GIS-based optimisation for district heating network planning. Energy Procedia 2018, 149, 635–641. [Google Scholar] [CrossRef]
- Teleszewski, T.J.; Krawczyk, D.A.; Rodero, A. Reduction of heat losses using quadruple heating pre-insulated networks: A case study. Energies 2019, 12, 4699. [Google Scholar] [CrossRef] [Green Version]
- SP. 131.13330.2012, ‘Building Climatology’. This Code of Practice Sets the Climatic Variables, Which Are Used in the Design of Buildings and Structures, Heating, Ventilation, Air-Conditioning, Water Supply Systems, While Planning and Developping of Urban and Rural Settlements; Federal Registry of National Building Codes & Standards: Moscow, Russia, 2012. [Google Scholar]
- ASHRAE CLIMATIC DESIGN CONDITIONS 2009/2013/2017. Available online: http://ashrae-meteo.info/ (accessed on 4 August 2020).
- Østergaard, D.S.; Svendsen, S. Costs and benefits of preparing existing Danish buildings for low-temperature district heating. Energy 2019, 176, 718–727. [Google Scholar] [CrossRef]
- Meesenburg, W.; Ommen, T.; Thorsen, J.E.; Elmegaard, B. Economic feasibility of ultra-low temperature district heating systems in newly built areas supplied by renewable energy. Energy 2020, 191, 116496. [Google Scholar] [CrossRef]
- Chicherin, S.; Junussova, L.; Junussov, T. Study on the modernisation of an extra-worn district heating (DH) system in Russia: Low temperature DH and 4 more options processing. E3S Web Conf. 2020, 143, 01011. [Google Scholar] [CrossRef] [Green Version]
- Chicherin, S. District Heating System Performance Charasteristics (Omsk, Russia, Nov. 2017). Available online: https://data.mendeley.com/datasets/4tgypy6hhf/1 (accessed on 1 July 2020).
- DIN 43760:1980-10. Elektrical Temperature Sensors; Reference Tables for Sensing Resistors for Resistors for Resistance Elements; Beuth GmbH: Berlin, Germany, 1980. [Google Scholar]
- IEC60751. Industrial Platinum Resistance Thermometers and Platinum Temperature Sensors; International Electrotechnical Commission (IEC): Geneva, Switzerland, 2008. [Google Scholar]
- Leśko, M.; Bujalski, W.; Futyma, K. Operational optimization in district heating systems with the use of thermal energy storage. Energy 2018, 165, 902–915. [Google Scholar] [CrossRef]
- Werner, S. International review of district heating and cooling. Energy 2017. [Google Scholar] [CrossRef]
- Gadd, H.; Werner, S. Achieving low return temperatures from district heating substations. Appl. Energy 2014, 136, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Buffa, S.; Cozzini, M.; D’Antoni, M.; Baratieri, M.; Fedrizzi, R. 5th generation district heating and cooling systems: A review of existing cases in Europe. Renew. Sustain. Energy Rev. 2019, 104, 504–522. [Google Scholar] [CrossRef]
Line Type | ||||
---|---|---|---|---|
- | Return | Supply/Return | Supply/Return | Supply/Return |
- | Annual Average Difference between Hot Water Temperature and Ground [°C] | |||
Pipe Dimension | 50 | 52.5 | 65 | 75 |
… | … | … | … | … |
DN50 | 0.02908 | 0.06513 | 0.07560 | 0.08374 |
DN65 | 0.03373 | 0.07443 | 0.08606 | 0.09537 |
DN80 | 0.03605 | 0.08025 | 0.09304 | 0.10234 |
DN100 | 0.03954 | 0.08839 | 0.10234 | 0.11165 |
DN150 | 0.04885 | 0.10932 | 0.12444 | 0.13607 |
DN200 | 0.05931 | 0.13142 | 0.15119 | 0.16515 |
DN250 | 0.06978 | 0.15352 | 0.17445 | 0.18957 |
DN300 | 0.07908 | 0.17329 | 0.19538 | 0.21283 |
DN350 | 0.08839 | 0.19073 | 0.21283 | 0.23493 |
… | … | … | … | … |
Year | Traditional Method | Novel Method | Charged to Consumers |
---|---|---|---|
2007 | 12% | 13% | 89% |
2008 | 10% | 10% | 91% |
2009 | 11% | 11% | 89% |
2010 | 11% | 15% | 86% |
2011 | 12% | 15% | 86% |
2012 | 12% | 14% | 87% |
2013 | 11% | 12% | 88% |
2014 | 11% | 13% | 87% |
2015 | 11% | 12% | 88% |
2016 | 11% | 16% | 85% |
2017 | 11% | 11% | 89% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chicherin, S.; Mašatin, V.; Siirde, A.; Volkova, A. Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy. Energies 2020, 13, 4505. https://doi.org/10.3390/en13174505
Chicherin S, Mašatin V, Siirde A, Volkova A. Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy. Energies. 2020; 13(17):4505. https://doi.org/10.3390/en13174505
Chicago/Turabian StyleChicherin, Stanislav, Vladislav Mašatin, Andres Siirde, and Anna Volkova. 2020. "Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy" Energies 13, no. 17: 4505. https://doi.org/10.3390/en13174505
APA StyleChicherin, S., Mašatin, V., Siirde, A., & Volkova, A. (2020). Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy. Energies, 13(17), 4505. https://doi.org/10.3390/en13174505