Performance and Emissions of a Spark Ignition Engine Operated with Gasoline Supplemented with Pyrogasoline and Ethanol
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Pyrolysis Bio-Oil Distillation
2.2. Fuels for the Tests
2.3. Experimental Setup
3. Results and Discussion
3.1. Fuel Characteristics
3.2. Performance Analysis
- (a)
- the engine worked well with all tested fuels;
- (b)
- the incorporation of pyrogasoline did not negatively alter the engine torque;
- (c)
- there is a synergistic gain in the presence of pyrogasoline and ethanol in small percentages in blends with gasoline.
3.3. Emission Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Glossary
ρ | Density |
AFR | Air–fuel ratio |
BSEC | Brake specific energy consumption |
CO | Carbon monoxide |
CO2 | Carbon dioxide |
CNG/LPG | Compressed natural gas/Liquid petroleum gases |
DPPO | Distilled PPO |
E | Ethanol |
GHG | Greenhouse gas |
G | Gasoline |
GLF | Gasoline-like fuel |
HC | Hydrocarbons |
HHV | Higher heating value |
H:C | Hydrogen-to-carbon ratio |
LHV | Lower heating value |
m | Mass |
MBT | Maximum braque torque |
NOx | Oxides of nitrogen |
O:C | Oxygen-to-carbon ratio |
ON | Octane number |
PG | Pyrogasoline |
PPO | Pyrolysis bio-oils of non-distilled plastic waste |
SI | Spark ignition |
UHC | Unburned hydrocarbons |
WOT | Wide open throttle |
References
- Cazzola, P. In Proceedings of the Insights Emerging from the 2015 Global EV Outlook (IEA), Goyang, Korea, 4 May 2015. Available online: https://www.iea.org/events/towards-a-global-ev-market (accessed on 4 September 2020).
- Coelho, P.; Costa, M. Combustão; Edições Orion: London, UK, 2007; p. 714. [Google Scholar]
- IEA. Breakdown of Sectoral Final Consumption by Source; IEA: Paris, France, 2011. [Google Scholar]
- Annex, A. Organisation for Economic Co-Operation. Agrcultural Outlook 2008–2017; OECD-FAO: Paris, France, 2008; pp. 1–73. [Google Scholar]
- IEA. Technology Roadmap-Biofuels for Transport. 2011. Available online: papers2://publication/uuid/7E683CA3-E72A-439B-8C06-CDAADB021565 (accessed on 4 September 2020).
- EC. Renewable Energy-Recast to 2030 (RED II). Available online: https://ec.europa.eu/jrc/en/jec/renewable-energy-recast-2030-red-ii (accessed on 5 August 2020).
- Directive 2018/2001/EU. Directive (EU) 2018/2001 of the European Parliament and of the Council on the Promotion of the Use of Energy from Renewable Sources. Off. J. Eur. Union 2018, 2018, 82–209. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001&from=EN (accessed on 4 September 2020).
- Comission of the European Communities. GREEN PAPER On the Management of Bio-Waste in the European Union; Comission of the European Communities: Brussels, Belgium, 2008; p. 19. [Google Scholar]
- European Commission. Directive 2015/1513 of the European parliament and of the council. J. Eur. Union. 2015, 2014, 20–30. [Google Scholar]
- Asomaning, J.; Mussone, P.; Bressler, D.C. Thermal deoxygenation and pyrolysis of oleic acid. J. Anal. Appl. Pyrolysis 2014, 105, 1–7. [Google Scholar] [CrossRef]
- Billaud, F.; Minh, A.K.T.; Lozano, P.; Pioch, D. Étude paramétrique du craquage catalytique de l’oléate de méthyle. Comptes Rendus Chim. 2004, 7, 91–96. [Google Scholar] [CrossRef]
- Demirbas, A. Gasoline-rich Liquid from sunflower oil by catalytic pyrolysis with alumina-treated sodium hydroxide. Energy Sources Part A Recover. Util. Environ. Eff. 2009, 31, 671–678. [Google Scholar] [CrossRef]
- Roesyadi, A.; Hariprajitno, D.; Nurjannah, N.; Savitri, S.D. HZSM-5 catalyst for cracking palm oil to gasoline: A comparative study with and without impregnation. Bull. Chem. React. Eng. Catal. 2013, 7, 185–190. [Google Scholar] [CrossRef]
- Agarwal, A.K. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energy Combust. Sci. 2007, 33, 233–271. [Google Scholar] [CrossRef]
- Zhao, F.; Lai, M.-C.; Harrington, D.L. Automotive spark-ignited direct-injection gasoline engines. Prog. Energy Combust. Sci. 1999, 25, 437–562. [Google Scholar] [CrossRef]
- Bušić, A.; Marđetko, N.; Kundas, S.; Morzak, G.; Belskaya, H.; Šantek, M.I.; Komes, D.; Novak, S.; Šantek, B. Bioethanol production from renewable raw materials and its separation and purification: A review. Food Technol. Biotechnol. 2018, 56, 289–311. [Google Scholar] [CrossRef] [PubMed]
- Öztop, H.F.; Varol, Y.; Altun, Ş.; Firat, M. Using gasoline-like fuel obtained from waste automobile tires in a spark-ignited engine. Energy Sources Part A Recover. Util. Environ. Eff. 2014, 36, 1468–1475. [Google Scholar] [CrossRef]
- Suiuay, C.; Laloon, K.; Katekaew, S.; Senawong, K.; Noisuwan, P.; Sudajan, S. Effect of gasoline-like fuel obtained from hard-resin of Yang (Dipterocarpus alatus) on single cylinder gasoline engine performance and exhaust emissions. Renew. Energy. 2020, 153, 634–645. [Google Scholar] [CrossRef]
- Kareddula, K.; Puli, R. Influence of plastic oil with ethanol gasoline blending on multi cylinder spark ignition engine. Alex. Eng. J. 2018, 57, 2585–2589. [Google Scholar] [CrossRef]
- Kumar, K.V.; Puli, R.K.; Kumari, A.S.; Shailesh, P. Performance and emission studies of a SI engine using distilled plastic pyrolysis oil-petrol blends. MATEC Web Conf. 2016, 45, 3002. [Google Scholar] [CrossRef] [Green Version]
- Owners Club 206cc P. TU5JP4 Technical Specifications. Peugeot 206cc Owners Club. Available online: http://www.peugeot206cc.co.uk/repair-206/206/info/gb/b1bbmek3.htm (accessed on 1 April 2019).
- Coates, J. Interpretation of infrared spectra, a practical approach. Encycl. Anal. Chem. 2006, 10815–10837. [Google Scholar] [CrossRef]
- OChemOnline. Infrared spectroscopy absorption table. Chem. Libr. 2016, 1–4. Available online: https://chem.libretexts.org/Bookshelves/Ancillary_Materials/Reference/Reference_Tables/Spectroscopic_Parameters/Infrared_Spectroscopy_Absorption_Table (accessed on 4 September 2020).
- Shamsul, N.S.; Kamarudin, S.K.; Rahman, N.A. Conversion of bio-oil to bio gasoline via pyrolysis and hydrothermal: A review. Renew. Sustain. Energy Rev. 2017, 80, 538–549. [Google Scholar] [CrossRef]
- Martins, J. Motores de Combustão Interna, 6th ed.; Engebook: Porto, Portugal, 2020; p. 586. ISBN 9789898927842. [Google Scholar]
Fuel Code | Gasoline (G) | Pyrogasoline (PG) | Ethanol (E) |
---|---|---|---|
G100 | 100 | ||
G97 + PG3 | 97 | 3 | |
G97 + PG1.5 + E1.5 | 97 | 1.5 | 1.5 |
G95 + PG5 | 95 | 5 | |
G95 + E5 | 95 | 5 | |
G95 + PG2.5 + E2.5 | 95 | 2.5 | 2.5 |
Engine designation | PSA TU5 JP4 |
Engine capacity (cm3) | 1587 |
Bore x Stroke (mm) | 78.5 × 82.0 |
Number of valves | 16 |
Compression ratio | 10.8:1 |
Injection system | Multipoint |
Maximum power (kW) | 87 at 6600 rpm |
Maximum torque (N.m) | 145 at 5200 rpm |
Fuel | ρ (g.cm−3) | HHV (MJ.kg−1) | LHV (MJ.kg−1) | pH | AFR |
---|---|---|---|---|---|
Gasoline | 0.75 | 42.6 | 40.0 | - | 14.2 |
Pyrogasoline | 0.85 | 42.2 | 39.4 | 4.5 | 13.0 |
Ethanol | 0.80 | 27.5 | 24.6 | - | 8.3 |
Gasoline | Pyrogasoline | Functional Group/Assignment |
---|---|---|
3015 | - | Alkene C-H strech |
2957 | 2955 | Methyl C-H asym./sym. stretch |
2923 | 2922 | Methylene C-H asym./sym. stretch |
2870 | - | Methyl C-H asym./sym. stretch |
- | 2853 | Methylene C–H asym./sym. stretch |
- | 1710 | Carboxylic acid C=O strech |
1608, 1506 e 1490 | - | Aromatic ring stretch |
1456 | 1457 | Methylene/Methyl C-H asym./sym. bend |
1377 | 1377 | Methyl C-H asym./sym. bend |
- | 1285 | Aromatic ester C-O strech |
1022 | - | Aromatic C-H in-plane bend |
- | 909 | Alkene C=C blend |
878–698 | 722, 698 | Aromatic C-H out-of-plane bend |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durão, L.; Costa, J.; Arantes, T.; Brito, F.P.; Martins, J.; Gonçalves, M. Performance and Emissions of a Spark Ignition Engine Operated with Gasoline Supplemented with Pyrogasoline and Ethanol. Energies 2020, 13, 4671. https://doi.org/10.3390/en13184671
Durão L, Costa J, Arantes T, Brito FP, Martins J, Gonçalves M. Performance and Emissions of a Spark Ignition Engine Operated with Gasoline Supplemented with Pyrogasoline and Ethanol. Energies. 2020; 13(18):4671. https://doi.org/10.3390/en13184671
Chicago/Turabian StyleDurão, Luís, Joaquim Costa, Tiago Arantes, F. P. Brito, Jorge Martins, and Margarida Gonçalves. 2020. "Performance and Emissions of a Spark Ignition Engine Operated with Gasoline Supplemented with Pyrogasoline and Ethanol" Energies 13, no. 18: 4671. https://doi.org/10.3390/en13184671
APA StyleDurão, L., Costa, J., Arantes, T., Brito, F. P., Martins, J., & Gonçalves, M. (2020). Performance and Emissions of a Spark Ignition Engine Operated with Gasoline Supplemented with Pyrogasoline and Ethanol. Energies, 13(18), 4671. https://doi.org/10.3390/en13184671