Computational and Experimental Study of Convection in a Vanadium Redox Flow Battery Strip Cell Architecture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Polarization Curves and In Situ Localized Current Distribution Measurements
2.2. Computational Fluid Dynamics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Novacheck, J.E.; Brinkman, G.L.; Porro, G.S. Operational Analysis of the Eastern Interconnection at Very High Renewable Penetrations; National Renewable Energy Lab.: Golden, CO, USA, 2018. [Google Scholar]
- U.S. Department of Energy. Grid Energy Storage Report. 2013; p. 67. Available online: https://www.energy.gov/oe/downloads/grid-energy-storage-december-2013 (accessed on 1 June 2019).
- Viswanathan, V.; Crawford, A.; Stephenson, D.; Kim, S.; Wang, W.; Li, B.; Coffey, G.; Thomsen, E.; Graff, G.; Balducci, P.; et al. Cost and performance model for redox flow batteries. J. Power Sources 2014, 247, 1040–1051. [Google Scholar] [CrossRef]
- Crawford, A.; Viswanathan, V.; Stephenson, D.; Wang, W.; Thomsen, E.; Reed, D.; Li, B.; Balducci, P.; Kintner-Meyer, M.; Sprenkle, V. Comparative analysis for various redox flow batteries chemistries using a cost performance model. J. Power Sources 2015, 293, 388–399. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Thomsen, E.; Xia, G.; Nie, Z.; Bao, J.; Recknagle, K.; Wang, W.; Viswanathan, V.; Luo, Q.; Wei, X.; et al. 1 kW/1 kWh advanced vanadium redox flow battery utilizing mixed acid electrolytes. J. Power Sources 2013, 237, 300–309. [Google Scholar] [CrossRef]
- Roe, S.; Menictas, C.; Skyllas-Kazacos, M. A High Energy Density Vanadium Redox Flow Battery with 3 M Vanadium Electrolyte. J. Electrochem. Soc. 2016, 163, A5023–A5028. [Google Scholar] [CrossRef]
- Skyllas-Kazacos, M.; Cao, L.; Kazacos, M.; Kausar, N.; Mousa, A. Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review. ChemSusChem 2016, 9, 1521–1543. [Google Scholar] [CrossRef]
- Choi, C.; Kim, S.; Kim, R.; Choi, Y.; Kim, S.; Jung, H.-Y.; Yang, J.H.; Kim, H.-T. A review of vanadium electrolytes for vanadium redox flow batteries. Renew. Sustain. Energy Rev. 2017, 69, 263–274. [Google Scholar] [CrossRef]
- Gandomi, Y.A.; Aaron, D.; Mench, M.M. Coupled Membrane Transport Parameters for Ionic Species in All-Vanadium Redox Flow Batteries. Electrochim. Acta 2016, 218, 174–190. [Google Scholar] [CrossRef]
- Gandomi, Y.A.; Aaron, D.S.; Mench, M.M. Influence of Membrane Equivalent Weight and Reinforcement on Ionic Species Crossover in All-Vanadium Redox Flow Batteries. Membranes 2017, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Gandomi, Y.A.; Aaron, D.S.; Zawodzinski, T.A.; Mench, M.M. In Situ potential distribution measurement and validated model for all-vanadium redox flow battery. J. Electrochem. Soc. 2016, 163, A5188–A5201. [Google Scholar] [CrossRef] [Green Version]
- Agar, E.; Knehr, K.; Chen, D.; Hickner, M.A.; Kumbur, E. Species transport mechanisms governing capacity loss in vanadium flow batteries: Comparing Nafion® and sulfonated Radel membranes. Electrochim. Acta 2013, 98, 66–74. [Google Scholar] [CrossRef]
- Agar, E. Species Transport Mechanisms Governing Crossover and Capacity Loss in Vanadium Redox Flow Batteries; Drexel University: Philadelphia, PA, USA, 2014. [Google Scholar]
- Knehr, K.W.; Agar, E.; Dennison, C.R.; Kalidindi, A.R.; Kumbur, E.C. A Transient Vanadium Flow Battery Model Incorporating Vanadium Crossover and Water Transport through the Membrane. J. Electrochem. Soc. 2012, 159, A1446–A1459. [Google Scholar] [CrossRef]
- Agar, E.; Benjamin, A.; Dennison, C.R.; Chen, D.; Hickner, M.A.; Kumbur, E. Reducing capacity fade in vanadium redox flow batteries by altering charging and discharging currents. J. Power Sources 2014, 246, 767–774. [Google Scholar] [CrossRef]
- Agar, E.; Knehr, K.W.; Dennison, C.R.; Kumbur, E.C. Simulating Performance and Species Crossover in a Vanadium Redox Flow Battery Using COMSOL Multiphysics. 2011. Available online: www.mem.drexel.edu/energy (accessed on 1 June 2019).
- Kim, D.K.; Yoon, S.J.; Kim, S. Transport phenomena associated with capacity loss of all-vanadium redox flow battery. Int. J. Heat Mass Transf. 2020, 148, 119040. [Google Scholar] [CrossRef]
- Pezeshki, A.M.; Tang, Z.J.; Fujimoto, C.; Sun, C.-N.; Mench, M.M.; Zawodzinski, T.A. Full Cell Study of Diels Alder Poly(phenylene) Anion and Cation Exchange Membranes in Vanadium Redox Flow Batteries. J. Electrochem. Soc. 2015, 163, A5154–A5162. [Google Scholar] [CrossRef]
- Pezeshki, A.M.; Clement, J.T.; Veith, G.M.; Zawodzinski, T.A.; Mench, M.M. High performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal activation. J. Power Sources 2015, 294, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Pezeshki, A.M.; Sacci, R.L.; Veith, G.M.; Zawodzinski, T.A.; Mench, M.M. The Cell-in-Series Method: A Technique for Accelerated Electrode Degradation in Redox Flow Batteries. J. Electrochem. Soc. 2016, 163, A5202–A5210. [Google Scholar] [CrossRef] [Green Version]
- Pezeshki, A.M.; Sacci, R.L.; Delnick, F.M.; Aaron, D.S.; Mench, M.M. Elucidating effects of cell architecture, electrode material, and solution composition on overpotentials in redox flow batteries. Electrochim. Acta 2017, 229, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Houser, J.; Clement, J.; Pezeshki, A.; Mench, M.M. Influence of architecture and material properties on vanadium redox flow battery performance. J. Power Sources 2016, 302, 369–377. [Google Scholar] [CrossRef]
- Houser, J.; Pezeshki, A.; Clement, J.T.; Aaron, D.; Mench, M.M. Architecture for improved mass transport and system performance in redox flow batteries. J. Power Sources 2017, 351, 96–105. [Google Scholar] [CrossRef]
- Mayrhuber, I.; Dennison, C.R.; Kalra, V.; Kumbur, E. Laser-perforated carbon paper electrodes for improved mass-transport in high power density vanadium redox flow batteries. J. Power Sources 2014, 260, 251–258. [Google Scholar] [CrossRef]
- Aaron, D.; Liu, Q.; Tang, Z.; Grim, G.; Papandrew, A.; Turhan, A.; Zawodzinski, T.; Mench, M.M. Dramatic performance gains in vanadium redox flow batteries through modified cell architecture. J. Power Sources 2012, 206, 450–453. [Google Scholar] [CrossRef]
- Rahman, F.; Skyllas-Kazacos, M. Solubility of vanadyl sulfate in concentrated sulfuric acid solutions. J. Power Sources 1998, 72, 105–110. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, H.; Sun, C.; Zou, Y.; Zhang, T. An optimal strategy of electrolyte flow rate for vanadium redox flow battery. J. Power Sources 2012, 203, 153–158. [Google Scholar] [CrossRef]
- Tang, A.; Bao, J.; Skyllas-Kazacos, M. Studies on pressure losses and flow rate optimization in vanadium redox flow battery. J. Power Sources 2014, 248, 154–162. [Google Scholar] [CrossRef]
- Khazaeli, A.; Vatani, A.; Tahouni, N.; Panjeshahi, M.H. Numerical investigation and thermodynamic analysis of the effect of electrolyte flow rate on performance of all vanadium redox flow batteries. J. Power Sources 2015, 293, 599–612. [Google Scholar] [CrossRef]
- König, S.; Suriyah, M.; Leibfried, T. Innovative model-based flow rate optimization for vanadium redox flow batteries. J. Power Sources 2016, 333, 134–144. [Google Scholar] [CrossRef]
- Kim, D.K.; Yoon, S.J.; Lee, J.; Kim, S. Parametric study and flow rate optimization of all-vanadium redox flow batteries. Appl. Energy 2018, 228, 891–901. [Google Scholar] [CrossRef]
- Wang, T.; Fu, J.; Zheng, M.; Yu, Z. Dynamic control strategy for the electrolyte flow rate of vanadium redox flow batteries. Appl. Energy 2018, 227, 613–623. [Google Scholar] [CrossRef]
- Akuzum, B.; Alparslan, Y.C.; Robinson, N.C.; Agar, E.; Kumbur, E. Obstructed flow field designs for improved performance in vanadium redox flow batteries. J. Appl. Electrochem. 2019, 49, 551–561. [Google Scholar] [CrossRef]
- Xu, Q.; Zhao, T.; Leung, P. Numerical investigations of flow field designs for vanadium redox flow batteries. Appl. Energy 2013, 105, 47–56. [Google Scholar] [CrossRef]
- Darling, R.M.; Perry, M.L. The Influence of Electrode and Channel Configurations on Flow Battery Performance. J. Electrochem. Soc. 2014, 161, A1381–A1387. [Google Scholar] [CrossRef]
- Latha, T.J.; Jayanti, S. Hydrodynamic analysis of flow fields for redox flow battery applications. J. Appl. Electrochem. 2014, 44, 995–1006. [Google Scholar] [CrossRef]
- Ke, X.; Alexander, J.I.D.; Prahl, J.M.; Savinell, R.F. Flow distribution and maximum current density studies in redox flow batteries with a single passage of the serpentine flow channel. J. Power Sources 2014, 270, 646–657. [Google Scholar] [CrossRef] [Green Version]
- Knudsen, E.; Albertus, P.; Cho, K.; Weber, A.Z.; Kojic, A. Flow simulation and analysis of high-power flow batteries. J. Power Sources 2015, 299, 617–628. [Google Scholar] [CrossRef] [Green Version]
- Lisboa, K.M.; Marschewski, J.; Ebejer, N.; Ruch, P.; Cotta, R.M.; Michel, B.; Poulikakos, D. Mass transport enhancement in redox flow batteries with corrugated fluidic networks. J. Power Sources 2017, 359, 322–331. [Google Scholar] [CrossRef]
- Ke, X.; Prahl, J.M.; Alexander, J.I.D.; Savinell, R.F. Redox flow batteries with serpentine flow fields: Distributions of electrolyte flow reactant penetration into the porous carbon electrodes and effects on performance. J. Power Sources 2018, 384, 295–302. [Google Scholar] [CrossRef]
- Maurya, S.; Nguyen, P.T.; Kim, Y.S.; Kang, Q.; Mukundan, R. Effect of flow field geometry on operating current density, capacity and performance of vanadium redox flow battery. J. Power Sources 2018, 404, 20–27. [Google Scholar] [CrossRef]
- Al-Yasiri, M.; Park, J. Study on Channel Geometry of All-Vanadium Redox Flow Batteries. J. Electrochem. Soc. 2017, 164, A1970–A1982. [Google Scholar] [CrossRef]
- Gundlapalli, R.; Jayanti, S. Performance characteristics of several variants of interdigitated flow fields for flow battery applications. J. Power Sources 2020, 467, 228225. [Google Scholar] [CrossRef]
- Dennison, C.R.; Agar, E.; Akuzum, B.; Kumbur, E.C. Enhancing Mass Transport in Redox Flow Batteries by Tailoring Flow Field and Electrode Design. J. Electrochem. Soc. 2015, 163, A5163–A5169. [Google Scholar] [CrossRef]
- Kok, M.D.R.; Khalifa, A.; Gostick, J.T. Multiphysics Simulation of the Flow Battery Cathode: Cell Architecture and Electrode Optimization. J. Electrochem. Soc. 2016, 163, A1408–A1419. [Google Scholar] [CrossRef]
- Chen, W.; Kang, J. Optimization of electrolyte flow and vanadium ions conversion by utilizing variable porosity electrodes in vanadium redox flow batteries. Chem. Phys. 2020, 529, 110577. [Google Scholar] [CrossRef]
- Tsushima, S.; Suzuki, T. Modeling and Simulation of Vanadium Redox Flow Battery with Interdigitated Flow Field for Optimizing Electrode Architecture. J. Electrochem. Soc. 2020, 167, 020553. [Google Scholar] [CrossRef]
- Lin, C.-H.; Zhuang, Y.-D.; Tsai, D.-G.; Wei, H.-J.; Liu, T.-Y. Performance Enhancement of Vanadium Redox Flow Battery by Treated Carbon Felt Electrodes of Polyacrylonitrile using Atmospheric Pressure Plasma. Polymers 2020, 12, 1372. [Google Scholar] [CrossRef]
- Bhattarai, A.; Wai, N.; Schweiss, R.; Whitehead, A.; Scherer, G.G.; Ghimire, P.C.; Nguyen, T.D.; Hng, H.H. Study of flow behavior in all-vanadium redox flow battery using spatially resolved voltage distribution. J. Power Sources 2017, 360, 443–452. [Google Scholar] [CrossRef]
- Becker, M.; Bredemeyer, N.; Tenhumberg, N.; Turek, T. Polarization curve measurements combined with potential probe sensing for determining current density distribution in vanadium redox-flow batteries. J. Power Sources 2016, 307, 826–833. [Google Scholar] [CrossRef]
- Hsieh, W.-Y.; Leu, C.-H.; Wu, C.-H.; Chen, Y.-S. Measurement of local current density of all-vanadium redox flow batteries. J. Power Sources 2014, 271, 245–251. [Google Scholar] [CrossRef]
- Liu, Q.; Turhan, A.; Zawodzinski, T.A.; Mench, M.M. In situ potential distribution measurement in an all-vanadium flow battery. Chem. Commun. 2013, 49, 6292. [Google Scholar] [CrossRef]
- Clement, J.T.; Zawodzinski, T.A.; Mench, M.M. Measurement of Localized Current Distribution in a Vanadium Redox Flow Battery. ECS Trans. 2014, 58, 9–16. [Google Scholar] [CrossRef]
- Ertugrul, T.Y.; Clement, J.T.; Gandomi, Y.A.; Aaron, D.S.; Mench, M.M. In-situ current distribution and mass transport analysis via strip cell architecture for a vanadium redox flow battery. J. Power Sources 2019, 437, 226920. [Google Scholar] [CrossRef]
- Ertugrul, T.Y.; Clement, J.T.; Gandomi, Y.A.; Aaron, D.; Mench, M.M. Isolation of Mass Transport and Current Distribution in Vanadium Flow Batteries via Segmented Strip Cell. ECS Meet. Abstr. 2019, MA2019-01. [Google Scholar] [CrossRef]
- Ertugrul, T.Y.; Houser, J.; Daugherty, M.; Aaron, D.; Mench, M.M. Understanding the Interplay between Electrolyte Velocity Distribution and Current Distribution in Vanadium Flow Battery Electrode. ECS Meet. Abstr. 2019, MA2019-02. [Google Scholar] [CrossRef]
- Ke, X.; Prahl, J.M.; Alexander, J.I.D.; Savinell, R.F. Mathematical Modeling of Electrolyte Flow in a Segment of Flow Channel over Porous Electrode Layered System in Vanadium Flow Battery with Flow Field Design. Electrochim. Acta 2017, 223, 124–134. [Google Scholar] [CrossRef] [Green Version]
- You, X.; Ye, Q.; Cheng, P. The Dependence of Mass Transfer Coefficient on the Electrolyte Velocity in Carbon Felt Electrodes: Determination and Validation. J. Electrochem. Soc. 2017, 164, E3386–E3394. [Google Scholar] [CrossRef]
- Gundlapalli, R.; Jayanti, S. Effect of electrolyte convection velocity in the electrode on the performance of vanadium redox flow battery cells with serpentine flow fields. J. Energy Storage 2020, 30, 101516. [Google Scholar] [CrossRef]
- Gurieff, N.; Keogh, D.F.; Bladry, M.; Timchenko, V.; Green, D.; Koskinen, I.; Menictas, C. Mass Transport Optimization for Redox Flow Battery Design. Appl. Sci. 2020, 10, 2801. [Google Scholar] [CrossRef]
- Clement, J.T.; Aaron, D.S.; Mench, M.M. In Situ Localized Current Distribution Measurements in All-Vanadium Redox Flow Batteries. J. Electrochem. Soc. 2016, 163, A5220–A5228. [Google Scholar] [CrossRef] [Green Version]
- COMSOL Multiphysics® v. 5.4. COMSOL AB: Stockholm, Sweden, 2019. Available online: www.comsol.com (accessed on 1 June 2019).
- Nield, D.A.; Bejan, A. Mechanics of Fluid Flow through a Porous Medium. In Convection in Porous Media; Springer: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Schweiss, R.; Meiser, C.; Damjanovic, T.; Galbiati, I.; Haak, N. SIGRACET® Gas Diffusion Layers for PEM Fuel Cells, Electrolyzers and Batteries; White Paper SGL Group: Wiesbaden, Germany, 2016; pp. 1–10. [Google Scholar]
- Mench, M.M. Fuel Cell Engines; John Wiley&Sons: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Oriji, G.; Katayama, Y.; Miura, T. Investigation on V(IV)/V(V) species in a vanadium redox flow battery. Electrochim. Acta 2004, 49, 3091–3095. [Google Scholar] [CrossRef]
- Kumar, S.; Jayanti, S. Effect of electrode intrusion on pressure drop and electrochemical performance of an all-vanadium redox flow battery. J. Power Sources 2017, 360, 548–558. [Google Scholar] [CrossRef]
Parameter | Value | Reference |
---|---|---|
Channel and electrode length (mm) | 50 | Chosen |
Channel width/land (mm) | 1 | Chosen |
Channel depth (mm) | 0.25, 0.50,1.00, 2.50 | Chosen |
Electrode width (mm) | 2 | Chosen |
Uncompressed electrode porosity (%) | 89 | SGL Group [64] |
Compressed electrode porosity (%) | 85 | [65] |
Electrode permeability x 1011 (m2) | 1.1 | SGL Group [64] |
Electrolyte density (kg m−3) | 1350 | [35,66] |
Electrolyte viscosity x 1000 (Pa s) | 2.5 | [35,66] |
Channel Depth (mm) | Flow Rate (mL min−1) | Average Velocity in the Channel (m s−1) | Average Velocity in the Electrode (m s−1) | Limiting Current (A cm−2) | Average Local Pressure Drop (Pa) | Overall Pressure Drop (Pa) |
---|---|---|---|---|---|---|
2.5 | 10 | 0.057013 | 4.85 × 10−6 | 0.1291 | 18.8 | 2433 |
20 | 0.11402 | 9.71 × 10−6 | 0.1528 | 37.7 | 5114 | |
30 | 0.17104 | 1.45 × 10−5 | 0.1825 | 56.6 | 8029 | |
40 | 0.22805 | 1.94 × 10−5 | 0.2044 | 75.5 | 11,167 | |
50 | 0.28505 | 2.42 × 10−5 | 0.2337 | 94.4 | 14,510 | |
1.00 | 10 | 0.11723 | 4.27 × 10−5 | 0.1419 | 82.8 | 3157 |
20 | 0.23446 | 8.55 × 10−4 | 0.2044 | 165.6 | 6726 | |
30 | 0.35169 | 1.28 × 10−4 | 0.2633 | 248.3 | 10,693 | |
40 | 0.46892 | 1.71 × 10−4 | 0.3161 | 331.1 | 15,065 | |
50 | 0.58612 | 2.14 × 10−4 | 0.3754 | 414.1 | 19,838 | |
0.50 | 10 | 0.18066 | 2.86 × 10−4 | 0.3638 | 402.3 | 6992 |
20 | 0.36131 | 5.73 × 10−4 | 0.5424 | 803.8 | 15,725 | |
30 | 0.54197 | 8.60 × 10−4 | 0.5939 | 1205.5 | 26,307 | |
40 | 0.72263 | 1.15 × 10−3 | 0.7513 | 1607.4 | 38,666 | |
50 | 0.90325 | 1.43 × 10−3 | 0.8704 | 2010.2 | 52,679 | |
0.25 | 10 | 0.24549 | 2.17 × 10−3 | 1.0791 | 2537.1 | 32,264 |
20 | 0.49097 | 4.35 × 10−3 | 1.342 | 5071.1 | 72,569 | |
30 | 0.73646 | 6.52 × 10−3 | 1.5150 | 6340.3 | 122,290 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ertugrul, T.Y.; Daugherty, M.C.; Houser, J.R.; Aaron, D.S.; Mench, M.M. Computational and Experimental Study of Convection in a Vanadium Redox Flow Battery Strip Cell Architecture. Energies 2020, 13, 4767. https://doi.org/10.3390/en13184767
Ertugrul TY, Daugherty MC, Houser JR, Aaron DS, Mench MM. Computational and Experimental Study of Convection in a Vanadium Redox Flow Battery Strip Cell Architecture. Energies. 2020; 13(18):4767. https://doi.org/10.3390/en13184767
Chicago/Turabian StyleErtugrul, Tugrul Y., Michael. C. Daugherty, Jacob R. Houser, Douglas S. Aaron, and Matthew M. Mench. 2020. "Computational and Experimental Study of Convection in a Vanadium Redox Flow Battery Strip Cell Architecture" Energies 13, no. 18: 4767. https://doi.org/10.3390/en13184767
APA StyleErtugrul, T. Y., Daugherty, M. C., Houser, J. R., Aaron, D. S., & Mench, M. M. (2020). Computational and Experimental Study of Convection in a Vanadium Redox Flow Battery Strip Cell Architecture. Energies, 13(18), 4767. https://doi.org/10.3390/en13184767