A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power?
Abstract
:1. Introduction
2. Methodology and Data
2.1. Adopted Approach
2.2. Assumptions
- An energy to power ratio (E/P ratio) constant at 4 h, as well as one full discharge cycle per day were considered [48];
- A life duration of 10 years was considered for current batteries; therefore, they will have to be replaced. Considering the technological advancements, the life duration of the new batteries is assumed to be 15 years, with a cost around 60% of the one currently taken into account [99].
2.3. Data Selection
2.3.1. CSP with Storage
2.3.2. PV with Storage
2.3.3. Offshore Wind with Storage
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Engeland, K.; Borga, M.; Creutin, J.D.; François, B.; Ramos, M.H.; Vidal, J.P. Space-time variability of climate variables and intermittent renewable electricity production—A review. Renew. Sustain. Energy Rev. 2017, 79, 600–617. [Google Scholar] [CrossRef]
- Guezgouz, M.; Jurasz, J.; Bekkouche, B. Techno-Economic and Environmental Analysis of a Hybrid PV-WT-PSH/BB Standalone System Supplying Various Loads. Energies 2019, 12, 514. [Google Scholar] [CrossRef] [Green Version]
- Stavrakas, V.; Spyridaki, N.A.; Flamos, A. Striving towards the deployment of bio-energy with carbon capture and storage (BECCS): A review of research priorities and assessment needs. Sustainability 2018, 10, 2206. [Google Scholar] [CrossRef] [Green Version]
- Zakeri, B.; Syri, S.; Rinne, S. Higher renewable energy integration into the existing energy system of Finland—Is there any maximum limit? Energy 2015, 92, 244–259. [Google Scholar] [CrossRef]
- Aberg, P.; Adib, R.; Appavou, F.; Brown, A.; Dwyer, S.; Epp, B.; Guerra, F.; Kondev, B.; Murdock, E.H.; Musolino, E.; et al. Renewables 2018 Global Status Report; REN21: Paris, France, 2018; ISBN 978-3-9818911-3-3. [Google Scholar]
- Murdock, H.E.; Gibb, D.; André, T.; Appavou, F.; Brown, A.; Epp, B.; Gibb, D.; Kondev, B.; McCrone, A.; Musolino, E.; et al. Renewables 2019 Global Status Report; REN21: Paris, France, 2019; ISBN 978-3-9818911-7-1. [Google Scholar]
- Papadelis, S.; Stavrakas, V.; Flamos, A. What do capacity deployment rates tell us about the efficiency of electricity generation from renewable energy sources support measures in Greece? Energies 2016, 9, 38. [Google Scholar] [CrossRef] [Green Version]
- Gephart, M.; Tesnière, L.; Klessmann, C. Driving Regional Cooperation Forward in the 2030 Renewable Energy Framework; D/2015/11.850/3; Heinrich-Böll-Foundation: Brussels, Belgium, 2015; Available online: https://eu.boell.org/sites/default/files/hbfecofys_regional_cooperation.pdf (accessed on 3 February 2020).
- Schlachtberger, D.P.; Becker, S.; Schramm, S.; Greiner, M. Backup flexibility classes in emerging large-scale renewable electricity systems. Energy Convers. Manag. 2016, 125, 336–346. [Google Scholar] [CrossRef] [Green Version]
- Stavrakas, V.; Flamos, A. A modular high-resolution demand-side management model to quantify benefits of demand-flexibility in the residential sector. Energy Convers. Manag. 2020, 205, 112339. [Google Scholar] [CrossRef]
- Gul, M.; Kotak, Y.; Muneer, T. Review on recent trend of solar photovoltaic technology. Energy Explor. Exploit. 2016, 34, 485–526. [Google Scholar] [CrossRef] [Green Version]
- Haegel, N.M.; Margolis, R.; Buonassisi, T.; Feldman, D.; Froitzheim, A.; Garabedian, R.; Green, M.; Glunz, S.; Henning, H.M.; Holder, B.; et al. Terawatt-scale photovoltaics: Trajectories and challenges. Science 2017, 356, 141–143. [Google Scholar] [CrossRef]
- Michas, S.; Stavrakas, V.; Spyridaki, N.A.; Flamos, A. Identifying Research Priorities for the further development and deployment of Solar Photovoltaics. Int. J. Sustain. Energy 2019, 38, 276–296. [Google Scholar] [CrossRef] [Green Version]
- Sahu, B.K.; Hiloidhari, M.; Baruah, D.C. Global trend in wind power with special focus on the top five wind power producing countries. Renew. Sustain. Energy Rev. 2013, 19, 348–359. [Google Scholar] [CrossRef]
- Trancik, J.E.; Jean, J.; Kavlak, G.; Klemun, M.M.; Edwards, M.R.; McNerney, J.; Miotti, M.; Brown, P.R.; Mueller, J.M.; Needell, Z.A. Technology Improvement and Emissions Reductions as Mutually Reinforcing Efforts: Observations from the Global Development of Solar and Wind Energy; MIT Press: Cambridge, MA, USA, 2015; Available online: http://hdl.handle.net/1721.1/102237 (accessed on 17 January 2020).
- Price, A. The Exploitation of renewable Sources of Energy for Power Generation. In Electrochemical Energy Storage for Renewable Sources and Grid Balancing; Moseley, P.T., Garche, J., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2015; pp. 3–12. ISBN 9780444626103. [Google Scholar]
- Akinyele, D.; Belikov, J.; Levron, Y. Battery storage technologies for electrical applications: Impact in stand-alone photovoltaic systems. Energies 2017, 10, 1760. [Google Scholar] [CrossRef] [Green Version]
- Beaudin, M.; Zareipour, H.; Schellenberglabe, A.; Rosehart, W. Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy Sustain. Dev. 2010, 14, 302–314. [Google Scholar] [CrossRef]
- Cárdenas, B.; Swinfen-Styles, L.; Rouse, J.P.; Hoskin, A.; Xu, W.; Garvey, S.D. Energy Storage for a High Penetration of Renewables. In Proceedings of the 2019 Offshore Energy and Storage Summit (OSES), Brest, France, 10–12 July 2019; pp. 1–10. [Google Scholar]
- Garvey, S.D.; Eames, P.C.; Wang, J.H.; Pimm, A.J.; Waterson, M.; MacKay, R.S.; Giulietti, M.; Flatley, L.C.; Thomson, M.; Barton, J.; et al. On generation-integrated energy storage. Energy Policy 2015, 86, 544–551. [Google Scholar] [CrossRef] [Green Version]
- Gils, H.C.; Simon, S.; Soria, R. 100% renewable energy supply for Brazil—The role of sector coupling and regional development. Energies 2017, 10, 1859. [Google Scholar] [CrossRef] [Green Version]
- Barelli, L.; Bidini, G.; Bonucci, F.; Castellini, L.; Castellini, S.; Ottaviano, A.; Pelosi, D.; Zuccari, A. Dynamic analysis of a hybrid energy storage system (H-ESS) coupled to a photovoltaic (PV) plant. Energies 2018, 11, 396. [Google Scholar] [CrossRef] [Green Version]
- Grünewald, P.; Cockerill, T.; Contestabile, M.; Pearson, P. The role of large scale storage in a GB low carbon energy future: Issues and policy challenges. Energy Policy 2011, 39, 4807–4815. [Google Scholar] [CrossRef]
- Malhotra, A.; Battke, B.; Beuse, M.; Stephan, A.; Schmidt, T. Use cases for stationary battery technologies: A review of the literature and existing projects. Renew. Sustain. Energy Rev. 2016, 56, 705–721. [Google Scholar] [CrossRef]
- Zakeri, B.; Rinne, S.; Syri, S. Wind integration into energy systems with a high share of nuclear power—What are the compromises? Energies 2015, 8, 2493–2527. [Google Scholar] [CrossRef] [Green Version]
- Mileva, A.; Nelson, J.H.; Johnston, J.; Kammen, D.M. SunShot solar power reduces costs and uncertainty in future low-carbon electricity systems. Environ. Sci. Technol. 2013, 47, 9053–9060. [Google Scholar] [CrossRef]
- Oh, E.; Son, S.Y. Electric energy storage design decision method for demand responsive buildings. Energy Build. 2016, 126, 139–145. [Google Scholar] [CrossRef]
- Solomon, A.A.; Kammen, D.M.; Callaway, D. Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria. Appl. Energy 2016, 168, 130–145. [Google Scholar] [CrossRef] [Green Version]
- Sidhu, A.S.; Pollitt, M.G.; Anaya, K.L. A social cost benefit analysis of grid-scale electrical energy storage projects: A case study. Appl. Energy 2018, 212, 881–894. [Google Scholar] [CrossRef]
- Ziegler, M.S.; Mueller, J.M.; Pereira, G.D.; Song, J.; Ferrara, M.; Chiang, Y.M.; Trancik, J.E. Storage requirements and costs of shaping renewable energy Toward grid decarbonization. Joule 2019, 3, 2134–2153. [Google Scholar] [CrossRef]
- Denholm, P.; Jorgenson, J.; Hummon, M.; Jenkin, T.; Palchak, D.; Kirby, B.; Ma., O.; O’Malley, M. Value of Energy Storage for Grid Applications; No. NREL/TP-6A20-58465; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2013. Available online: https://www.nrel.gov/docs/fy13osti/58465.pdf (accessed on 29 February 2020).
- González-Roubaud, E.; Pérez-Osorio, D.; Prieto, C. Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts. Renew. Sustain. Energy Rev. 2017, 80, 133–148. [Google Scholar] [CrossRef]
- Kuravi, S.; Trahan, J.; Goswami, D.Y.; Rahman, M.M.; Stefanakos, E.K. Thermal energy storage technologies and systems for concentrating solar power plants. Prog. Energy Combust. Sci. 2013, 39, 285–319. [Google Scholar] [CrossRef]
- Jorgenson, J.; Denholm, P.; Mehos, M. Estimating the Value of Utility-Scale Solar Technologies in California under a 40% Renewable Portfolio Standard; No. NREL/TP-6A20-61685; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2014. Available online: https://www.nrel.gov/docs/fy14osti/61685.pdf (accessed on 25 February 2020).
- Jorgenson, J.; Mehos, M.; Denholm, P. Comparing the net cost of CSP-TES to PV deployed with battery storage. In AIP Conference Proceedings; AIP Publishing LLC: College Park, MD, USA, 2016; Volume 1734, p. 080003. [Google Scholar]
- Madaeni, S.H.; Sioshansi, R.; Denholm, P. Capacity Value of Concentrating Solar Power Plants; No. NREL/TP-6A20-51253; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2011. Available online: https://www.nrel.gov/docs/fy11osti/51253.pdf (accessed on 28 February 2020).
- Hess, D. The empirical probability of integrating CSP and its cost optimal configuration in a low carbon energy system of EUMENA. Sol. Energy 2018, 166, 267–307. [Google Scholar] [CrossRef]
- Pfenninger, S.; Gauché, P.; Lilliestam, J.; Damerau, K.; Wagner, F.; Patt, A. Potential for concentrating solar power to provide baseload and dispatchable power. Nat. Clim. Chang. 2014, 4, 689. [Google Scholar] [CrossRef]
- Castillo, A.; Gayme, D.F. Grid-scale energy storage applications in renewable energy integration: A survey. Energy Convers. Manag. 2014, 87, 885–894. [Google Scholar] [CrossRef]
- Papadopoulou, A.; Vasileiou, G.; Stavrakas, V.; Klenathis, N.; Flamos, A. Lessons from Existing Cooperation Initiatives, Competing Technologies and Concepts; UPRC, D6.5 MUSTEC Report; European Commission: Brussels, Belgium, 2019; Available online: https://mustec.eu/sites/default/files/reports/MUSTEC_Deliverable_6.5_.pdf (accessed on 3 January 2020).
- Cole, W.; Frazier, A. Cost Projections for Utility-Scale Battery Storage; NREL/TP-6A20-73222; National Renewable Energy Laboratory: Golden, CO, USA, 2019. Available online: https://www.nrel.gov/docs/fy19osti/73222.pdf (accessed on 29 February 2020).
- Fu, R.; Feldman, D.; Margolis, R.; Woodhouse, M.; Ardani, K. US Solar Photovoltaic System Cost Benchmark: Q1 2017; No. NREL/TP-6A20-68925; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2017. Available online: https://www.nrel.gov/docs/fy17osti/68925.pdf (accessed on 29 February 2020).
- IRENA. Electricity Storage and Renewables: Costs and Markets to 2030; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2017; ISBN 978-92-9260-038-9. [Google Scholar]
- Yoon, M.; Lee, J.; Song, S.; Yoo, Y.; Jang, G.; Jung, S.; Hwang, S. Utilization of Energy Storage System for Frequency Regulation in Large-Scale Transmission System. Energies 2019, 12, 3898. [Google Scholar] [CrossRef] [Green Version]
- Di Cosmo, V.; Valeri, L.M. Wind, storage, interconnection and the cost of electricity generation. Energy Econ. 2018, 69, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Fathima, A.H.; Palanisamy, K. Battery energy storage applications in wind integrated systems—A review. In Proceedings of the 2014 International Conference on Smart Electric Grid (ISEG), Guntur, India, 19–20 September 2014; pp. 1–8. [Google Scholar]
- Lai, C.S.; McCulloch, M.D. Levelized cost of electricity for solar photovoltaic and electrical energy storage. Appl. Energy 2017, 190, 191–203. [Google Scholar] [CrossRef]
- Lazard. Lazard’s Levelized Cost of Storage Analysis V4.0. 2018. Available online: https://www.lazard.com/media/450774/lazards-levelized-cost-of-storage-version-40-vfinal.pdf (accessed on 18 December 2019).
- Sperstad, I.B.; Korpås, M. Energy storage scheduling in distribution systems considering wind and photovoltaic generation uncertainties. Energies 2019, 12, 1231. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Scheller-Wolf, A.; Secomandi, N.; Smith, S. Managing Wind-Based Electricity Generation in the Presence of Storage and Transmission Capacity. Prod. Oper. Manag. 2019, 28, 970–989. [Google Scholar] [CrossRef]
- IRENA. Renewable Power Generation Costs in 2017; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2018; ISBN 978-92-9260-040-2. [Google Scholar]
- Wu, X.; Hu, W.; Huang, Q.; Chen, C.; Liu, Z.; Chen, Z. Optimal power dispatch strategy of onshore wind farms considering environmental impact. Int. J. Electr. Power Energy Syst. 2020, 116, 105548. [Google Scholar] [CrossRef]
- Enevoldsen, P. Onshore wind energy in Northern European forests: Reviewing the risks. Renew. Sustain. Energy Rev. 2016, 60, 1251–1262. [Google Scholar] [CrossRef]
- Ryberg, D.S.; Tulemat, Z.; Stolten, D.; Robinius, M. Uniformly constrained land eligibility for onshore European wind power. Renew. Energy 2020, 146, 921–931. [Google Scholar] [CrossRef]
- Welisch, M. The Market Environment for CSP Projects in Europe; D6.1 MUSTEC Report; TU Wien: Vienna, Austria, 2019; Available online: https://mustec.eu/sites/default/files/reports/MUSTEC_D6.1_final.pdf (accessed on 22 February 2020).
- Musi, R.; Grange, B.; Sgouridis, S.; Guedez, R.; Armstrong, P.; Slocum, A.; Calvet, N. Techno-economic analysis of concentrated solar power plants in terms of levelized cost of electricity. In AIP Conference Proceedings; AIP Publishing LLC: College Park, MD, USA, 2017; Volume 1850, p. 160018. [Google Scholar]
- Osborne, M.J. A resolution to the NPV–IRR debate? Q. Rev. Econ. Financ. 2010, 50, 234–239. [Google Scholar] [CrossRef]
- Sung, S.; Jung, W. Economic Competitiveness Evaluation of the Energy Sources: Comparison between a Financial Model and Levelized Cost of Electricity Analysis. Energies 2019, 12, 4101. [Google Scholar] [CrossRef] [Green Version]
- Borenstein, S. The Market Value and Cost of Solar Photovoltaic Electricity Production. 2008. Available online: https://escholarship.org/uc/item/3ws6r3j4 (accessed on 28 January 2020).
- Fripp, M.; Wiser, R.H. Effects of temporal wind patterns on the value of wind-generated electricity in california and the northwest. IEEE Trans. Power Syst. 2008, 23, 477–485. [Google Scholar] [CrossRef] [Green Version]
- Joskow, P.L. Comparing the costs of intermittent and dispatchable electricity generating technologies. Am. Econ. Rev. 2011, 101, 238–241. [Google Scholar] [CrossRef] [Green Version]
- Lamont, A.D. Assessing the long-term system value of intermittent electric generation technologies. Energy Econ. 2008, 30, 1208–1231. [Google Scholar] [CrossRef] [Green Version]
- Bazilian, M.; Onyeji, I.; Liebreich, M.; MacGill, I.; Chase, J.; Shah, J.; Gielen, D.; Arent, D.; Landfear, D.; Zhengrong, S. Re-considering the economics of photovoltaic power. Renew. Energy 2013, 53, 329–338. [Google Scholar] [CrossRef]
- Mendelsohn, M.; Kreycik, C.; Bird, L.; Schwabe, P.; Cory, K. The Impact of Financial Structure on the Cost of Solar Energy; No. NREL/TP-6A20-53086; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2012. Available online: https://www.nrel.gov/docs/fy12osti/53086.pdf (accessed on 23 February 2020).
- Ueckerdt, F.; Hirth, L.; Luderer, G.; Edenhofer, O. System LCOE: What are the costs of variable renewables? Energy 2013, 63, 61–75. [Google Scholar] [CrossRef]
- Hirth, L.; Ueckerdt, F.; Edenhofer, O. Why wind is not coal: On the economics of electricity generation. Energy J. 2016, 37. [Google Scholar] [CrossRef]
- Costello, R.; Pecher, A. Economics of WECs. In Handbook of Ocean Wave Energy; Pecher, A., Kofoed, J.P., Eds.; Springer: Aalborg, Denmark, 2017; pp. 101–138. ISBN 978-3-319-39888-4. [Google Scholar]
- Hernández-Moro, J.; Martinez-Duart, J.M. Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution. Renew. Sustain. Energy Rev. 2013, 20, 119–132. [Google Scholar] [CrossRef]
- Aldersey-Williams, J.; Rubert, T. Levelised cost of energy—A theoretical justification and critical assessment. Energy Policy 2019, 124, 169–179. [Google Scholar] [CrossRef]
- Branker, K.; Pathak, M.J.M.; Pearce, J.M. A review of solar photovoltaic levelized cost of electricity. Renew. Sustain. Energy Rev. 2011, 15, 4470–4482. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.Y.; Finenko, A. Moving beyond LCOE: Impact of various financing methods on PV profitability for SIDS. Energy Policy 2016, 98, 749–758. [Google Scholar] [CrossRef]
- Jenkin, T.J.; Feldman, D.J.; Kwan, A.; Walker, B.J. Estimating the Impact of Residual Value for Electricity Generation Plants on Capital Recovery, Levelized Cost of Energy, and Cost to Consumers; No. NREL/TP-6A20-72217; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2019. Available online: https://www.nrel.gov/docs/fy19osti/72217.pdf (accessed on 25 February 2020).
- Lang, T.; Gloerfeld, E.; Girod, B. Don’t just follow the sun—A global assessment of economic performance for residential building photovoltaics. Renew. Sustain. Energy Rev. 2015, 42, 932–951. [Google Scholar] [CrossRef]
- Žižlavský, O. Net present value approach: Method for economic assessment of innovation projects. Procedia-Soc. Behav. Sci. 2014, 156, 506–512. [Google Scholar] [CrossRef]
- Wetekamp, W. Net Present Value (NPV) as a tool supporting effective project management. In Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems, Prague, Czech Republic, 10 November 2011; Volume 2, pp. 898–900. [Google Scholar]
- Flamos, A. A sectoral micro-economic approach to scenario selection and development: The case of the Greek power sector. Energies 2016, 9, 77. [Google Scholar] [CrossRef]
- Fuqiang, W.; Ziming, C.; Jianyu, T.; Yuan, Y.; Yong, S.; Linhua, L. Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review. Renew. Sustain. Energy Rev. 2017, 79, 1314–1328. [Google Scholar] [CrossRef]
- Szilágyi, A.; Gróf, G. Estimating the environmental footprint of a grid-connected 20 MWp photovoltaic system. Sol. Energy 2020, 197, 491–497. [Google Scholar] [CrossRef]
- Yang, J.; Chang, Y.; Zhang, L.; Hao, Y.; Yan, Q.; Wang, C. The life-cycle energy and environmental emissions of a typical offshore wind farm in China. J. Clean. Prod. 2018, 180, 316–324. [Google Scholar] [CrossRef]
- Guerrero, R.C.; Angelo, M.; Pedrasa, A. An milp-based model for hybrid renewable energy system planning considering equipment degradation and battery lifetime. In Proceedings of the 2019 IEEE 2nd International Conference on Power and Energy Applications (ICPEA), Singapore, 27–30 April 2019; pp. 207–211. [Google Scholar]
- Malagueta, D.; Szklo, A.; Soria, R.; Dutra, R.; Schaeffer, R.; Borba, B.S.M.C. Potential and impacts of Concentrated Solar Power (CSP) integration in the Brazilian electric power system. Renew. Energy 2014, 68, 223–235. [Google Scholar] [CrossRef]
- Hermelink, A.H.; de Jager, D. Evaluating our Future: The Crucial Role of Discount Rates in European Commission Energy System Modelling; eceee & Ecofys, 2015; Available online: https://www.eceee.org/static/media/uploads/site-2/policy-areas/discount-rates/evaluating-our-future-report.pdf (accessed on 13 February 2020).
- Steinbach, J.; Staniaszek, D. Discount Rates in Energy System Analysis Discussion Paper; BPIE: Berlin, Germany, 2015; Available online: http://bpie.eu/wp-content/uploads/2015/10/Discount_rates_in_energy_system-discussion_paper_2015_ISI_BPIE.pdf (accessed on 13 February 2020).
- Oxera, A. Discount Rates for Low-Carbon and Renewable Generation Technologies; Report; Oxera Consulting LLP: Oxford, UK, 2011; Available online: https://www.oxera.com/wp-content/uploads/2018/03/Oxera-report-on-low-carbon-discount-rates.pdf (accessed on 13 February 2020).
- European Commission. Study Supporting the Impact Assessment Concerning Transmission Tariffs and Congestion Income Policies; Final Report; European Commission: Brussels, Belgium, May 2017; Available online: https://ec.europa.eu/energy/sites/ener/files/documents/final_report_clean_version_may_3_2017.pdf (accessed on 31 January 2020).
- European Commission. Energy Prices and Costs in Europe; SWD (2019) 1 Final; European Commission: Brussels, Belgium, 2019; Available online: https://ec.europa.eu/transparency/regdoc/rep/10102/2019/EN/SWD-2019-1-F1-EN-MAIN-PART-4.PDF (accessed on 31 January 2020).
- Schöniger, F.; Resch, G. Case Studies Analysis of Prospects for Different CSP Technology Concepts; Deliverable 8.1 MUSTEC Project; TU Wien: Vienna, Austria, 2019; Available online: https://mustec.eu/sites/default/files/reports/MUSTEC_Deliverable_8.1_final.pdf (accessed on 28 January 2020).
- DG Energy. Quarterly Report on European Electricity Markets, Volume 11; Issue 2, Second Quarter of 2018; DG Energy: Brussels, Belgium, 2018; Available online: https://ec.europa.eu/energy/sites/ener/files/documents/quarterly_report_on_european_electricity_markets_q2_2018.pdf (accessed on 31 January 2020).
- DG Energy. Quarterly Report on European Electricity Markets, Volume 12; Issue 2, Second Quarter of 2019; DG Energy: Brussel, Belgium, 2019; Available online: https://ec.europa.eu/energy/sites/ener/files/documents/quarterly_report_on_european_electricity_markets_q_2_2019_final.pdf (accessed on 31 January 2020).
- Koch, S.; Andersson, G. Assessment of revenue potentials of ancillary service provision by flexible unit portfolios. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–8. [Google Scholar]
- Rebours, Y.G.; Kirschen, D.S.; Trotignon, M.; Rossignol, S. A survey of frequency and voltage control ancillary services—Part II: Economic features. IEEE Trans. Power Syst. 2007, 22, 358–366. [Google Scholar] [CrossRef]
- ENTSO-E. Overview of Transmission Tariffs in Europe: Synthesis 2018. May 2018. Available online: https://docstore.entsoe.eu/Documents/MC%20documents/TTO_Synthesis_2018.pdf (accessed on 31 January 2020).
- Hirth, L.; Ueckerdt, F. The decreasing market value of variable renewables: Integration options and deadlocks. In Transition to Renewable Energy Systems; Stolten, D., Scherer, V., Eds.; John Wiley & Sons: Weinheim, Germany, 2013; pp. 75–92. ISBN 978-3-527-33239-7. [Google Scholar]
- Imtiaz, A.M.; Khan, F.H.; Kamath, H. A low-cost time shared cell balancing technique for future lithium-ion battery storage system featuring regenerative energy distribution. In Proceedings of the 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Fort Worth, TX, USA, 6–11 March 2011; pp. 792–799. [Google Scholar]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Killer, M.; Farrokhseresht, M.; Paterakis, N.G. Implementation of large-scale Li-ion battery energy storage systems within the EMEA region. Appl. Energy 2020, 260, 114166. [Google Scholar] [CrossRef]
- Zakeri, B.; Syri, S. Electrical energy storage systems: A comparative life cycle cost analysis. Renew. Sustain. Energy Rev. 2015, 42, 569–596. [Google Scholar] [CrossRef]
- Fu, R.; Remo, T.W.; Margolis, R.M. 2018 US Utility-Scale Photovoltaics-Plus-Energy Storage System Costs Benchmark; No. NREL/TP-6A20-71714; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2018. Available online: https://www.nrel.gov/docs/fy19osti/71714.pdf (accessed on 29 February 2020).
- Kost, C.; Shammugam, S.; Jülch, V.; Nguyen, H.T.; Schlegl, T. Levelized Cost of Electricity, Renewable Energy Technologies; A Fraunhofer ISE Report; Fraunhofer ISE: Freiburg im Breisgau, Germany, 2018; Available online: https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/studies/EN2018_Fraunhofer-ISE_LCOE_Renewable_Energy_Technologies.pdf (accessed on 31 January 2020).
- Hesse, H.C.; Schimpe, M.; Kucevic, D.; Jossen, A. Lithium-ion battery storage for the grid—A review of stationary battery storage system design tailored for applications in modern power grids. Energies 2017, 10, 2107. [Google Scholar] [CrossRef] [Green Version]
- Mégel, O.; Mathieu, J.L.; Andersson, G. Maximizing the potential of energy storage to provide fast frequency control. In Proceedings of the IEEE PES ISGT Europe 2013, Lynbgy, Denmark, 6–9 October 2013; pp. 1–5. [Google Scholar]
- Mongird, K.; Viswanathan, V.V.; Balducci, P.J.; Alam, M.J.E.; Fotedar, V.; Koritarov, V.S.; Hadjerioua, B. Energy Storage Technology and Cost Characterization Report; No. PNNL-28866; Pacific Northwest National Lab. (PNNL): Richland, WA, USA, 2019. Available online: https://www.osti.gov/servlets/purl/1573487 (accessed on 23 February 2020).
- Denholm, P.; Nunemaker, J.; Gagnon, P.; Cole, W. The potential for battery energy storage to provide peaking capacity in the United States. Renew. Energy 2020, 151, 1269–1277. [Google Scholar] [CrossRef]
- Souza, A. Selection of Representative and Strategic STE Projects Potentially Suitable for Cooperation; Deliverable 5.1, MUSTEC Project; ESTELA: Brussels, Belgium, 2018; Available online: https://mustec.eu/sites/default/files/reports/MUSTEC-D5.1-Selection-of-representative-CSP-projects-ESTELA.pdf (accessed on 11 February 2020).
- Lilliestam, J.; Pitz-Paal, R. Concentrating solar power for less than USD 0.07 per kWh: Finally the breakthrough? Renew. Energy Focus 2018, 26, 17–21. [Google Scholar] [CrossRef]
- Lazard. Lazard’s Levelized Cost of Energy Analysis—Version 11.0. 2017. Available online: https://www.lazard.com/media/450337/lazard-levelized-cost-of-energy-version-110.pdf (accessed on 11 February 2020).
- IRENA. Renewable Power Generation Costs in 2018; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2019; ISBN 978-92-9260-126-3. [Google Scholar]
- Feldman, D.J.; Margolis, R.M.; Hoskins, J. Q4 2017/Q1 2018 Solar Industry Update; No. NREL/PR-6A20-71493; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2018. Available online: https://www.nrel.gov/docs/fy18osti/71493.pdf (accessed on 29 February 2020).
- Yousif, M.; Ai, Q.; Wattoo, W.A.; Jiang, Z.; Hao, R.; Gao, Y. Least cost combinations of solar power, wind power, and energy storage system for powering large-scale grid. J. Power Sources 2019, 412, 710–716. [Google Scholar] [CrossRef]
- Michas, S.; Stavrakas, V.; Papadelis, S.; Flamos, A. A transdisciplinary modeling framework for the participatory design of dynamic adaptive policy pathways. Energy Policy 2020, 139, 111350. [Google Scholar] [CrossRef]
- Stavrakas, V.; Papadelis, S.; Flamos, A. An agent-based model to simulate technology adoption quantifying behavioural uncertainty of consumers. Appl. Energy 2019, 255, 113795. [Google Scholar] [CrossRef]
- Nikas, A.; Stavrakas, V.; Arsenopoulos, A.; Doukas, H.; Antosiewicz, M.; Witajewski-Baltvilks, J.; Flamos, A. Barriers to and consequences of a solar-based energy transition in Greece. Environ. Innov. Soc. Transit. 2018. [Google Scholar] [CrossRef]
- Stehly, T.J.; Beiter, P.C.; Heimiller, D.M.; Scott, G.N. 2017 Cost of Wind Energy Review; No. NREL/TP-6A20-72167; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2018. Available online: https://www.nrel.gov/docs/fy18osti/72167.pdf (accessed on 21 February 2020).
- CSP guru. A Database of Concentrating Solar Power Plants of the World for Energy Modellers and Analysts. 2020. Available online: https://csp.guru/ (accessed on 25 February 2020).
- IRENA. Renewable Energy Technologies: Cost Analysis Series on Concentrating Solar Power; Volume 1:Power Sector Issue 2/5; IRENA: Abu Dhabi, United Arab Emirates, 2012; Available online: https://www.irena.org/documentdownloads/publications/re_technologies_cost_analysis-csp.pdf (accessed on 25 February 2020).
- Lilliestam, J. Whither CSP? Taking Stock of a Decade of Concentrated Solar Power Expansion and Development; Deliverable 4.2, MUSTEC Project; ETH Zurich: Zurich, Switzerland, 2018; Available online: http://mustec.eu/sites/default/files/reports/Lilliestam%202018%20Whither%20CSP_Deliverable4.2%20MUSTEC.pdf (accessed on 27 February 2020).
- Song, Y.; Hu, W.; Xu, X.; Huang, Q.; Chen, G.; Han, X.; Chen, Z. Optimal Investment Strategies for Solar Energy Based Systems. Energies 2019, 12, 2826. [Google Scholar] [CrossRef] [Green Version]
- Sulistyo, S.; Wibowo, A.M.; Nugroho, S. Comparison Power Consumption 125 Watts Pump by Using AC and DC Based on Solar Energy. In Proceedings of the 2019 6th International Conference on Electric Vehicular Technology (ICEVT), Bali, Indonesia, 18–21 November 2019; pp. 390–392. [Google Scholar]
- Mancini, F.; Nastasi, B. Solar Energy Data Analytics: PV Deployment and Land Use. Energies 2020, 13, 417. [Google Scholar] [CrossRef] [Green Version]
- Mazzoni, S.; Ooi, S.; Nastasi, B.; Romagnoli, A. Energy storage technologies as techno-economic parameters for master-planning and optimal dispatch in smart multi energy systems. Appl. Energy 2019, 254, 113682. [Google Scholar] [CrossRef]
- Edenhofer, O.; Hirth, L.; Knopf, B.; Pahle, M.; Schlömer, S.; Schmid, E.; Ueckerdt, F. On the economics of renewable energy sources. Energy Econ. 2013, 40, S12–S23. [Google Scholar] [CrossRef]
- Ondraczek, J.; Komendantova, N.; Patt, A. WACC the dog: The effect of financing costs on the levelized cost of solar PV power. Renew. Energy 2015, 75, 888–898. [Google Scholar] [CrossRef]
- Reichelstein, S.; Yorston, M. The prospects for cost competitive solar PV power. Energy Policy 2013, 55, 117–127. [Google Scholar] [CrossRef]
- Talavera, D.L.; Muñoz-Cerón, E.; de la Casa, J.; Lozano-Arjona, D.; Theristis, M.; Pérez-Higueras, P.J. Complete Procedure for the Economic, Financial and Cost-Competitiveness of Photovoltaic Systems with Self-Consumption. Energies 2019, 12, 345. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Zhang, X.; Song, D.; Tang, W.; Yang, J.; Li, L.; Tian, X.; Wen, W. Optimal design of rated wind speed and rotor radius to minimizing the cost of energy for offshore wind turbines. Energies 2018, 11, 2728. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, T.; Hasager, C.B. How expensive is expensive enough? Opportunities for cost reductions in offshore wind energy logistics. Energies 2016, 9, 437. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, T.; Hasager, C.B.; Jensen, C.M. The role of logistics in practical levelized cost of energy reduction implementation and government sponsored cost reduction studies: Day and night in offshore wind operations and maintenance logistics. Energies 2017, 10, 464. [Google Scholar] [CrossRef] [Green Version]
- Lovegrove, K.; James, G.; Leitch, D.; Milczarek, A.; Ngo, A.; Rutovitz, J.; Watt, M.; Wyder, J. Comparison of Dispatchable Renewable Electricity Options: Technologies for an Orderly Transition. 2018. Available online: https://arena.gov.au/assets/2018/10/Comparison-Of-Dispatchable-Renewable-Electricity-Options-ITP-et-al-for-ARENA-2018.pdf (accessed on 28 February 2020).
- Bussar, C.; Stöcker, P.; Cai, Z.; Moraes, L., Jr.; Magnor, D.; Wiernes, P.; van Bracht, N.; Moser, A.; Sauer, D.U. Large-scale integration of renewable energies and impact on storage demand in a European renewable power system of 2050—Sensitivity study. J. Energy Storage 2016, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.; Kim, J. Feasibility and impact analysis of a renewable energy source (RES)-based energy system in Korea. Energy 2015, 85, 317–328. [Google Scholar] [CrossRef]
- Collins, S.; Deane, P.; Gallachóir, B.Ó.; Pfenninger, S.; Staffell, I. Impacts of inter-annual wind and solar variations on the European power system. Joule 2018, 2, 2076–2090. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, A.S.; van den Broek, M.; Zappa, W.; Turkenburg, W.C.; Faaij, A. Least-cost options for integrating intermittent renewables in low-carbon power systems. Appl. Energy 2016, 161, 48–74. [Google Scholar] [CrossRef] [Green Version]
- Maqbool, A.S.; Baetens, J.; Lotfi, S.; Vandevelde, L.; Van Eetvelde, G. Assessing Financial and Flexibility Incentives for Integrating Wind Energy in the Grid Via Agent-Based Modeling. Energies 2019, 12, 4314. [Google Scholar] [CrossRef] [Green Version]
- Kiptoo, M.K.; Adewuyi, O.B.; Lotfy, M.E.; Ibrahimi, A.M.; Senjyu, T. Harnessing demand-side management benefit towards achieving a 100% renewable energy microgrid. Energy Rep. 2020, 6, 680–685. [Google Scholar] [CrossRef]
- Papaefthymiou, G.; Dragoon, K. Towards 100% renewable energy systems: Uncapping power system flexibility. Energy Policy 2016, 92, 69–82. [Google Scholar] [CrossRef]
- Alizadeh, M.I.; Moghaddam, M.P.; Amjady, N.; Siano, P.; Sheikh-El-Eslami, M.K. Flexibility in future power systems with high renewable penetration: A review. Renew. Sustain. Energy Rev. 2016, 57, 1186–1193. [Google Scholar] [CrossRef]
- Cebulla, F.; Haas, J.; Eichman, J.; Nowak, W.; Mancarella, P. How much electrical energy storage do we need? A synthesis for the US, Europe, and Germany. J. Clean. Prod. 2018, 181, 449–459. [Google Scholar] [CrossRef]
- Matsuo, Y.; Endo, S.; Nagatomi, Y.; Shibata, Y.; Komiyama, R.; Fujii, Y. Investigating the economics of the power sector under high penetration of variable renewable energies. Appl. Energy 2020, 267, 113956. [Google Scholar] [CrossRef]
Investment Cost (€/kW) | O&M Fixed Costs (€/kW) | O&M Variable Costs (€/kWh) | Capacity Factor (%) | |||||
---|---|---|---|---|---|---|---|---|
Low | High | Low | High | Low | High | Low | High | |
2800 | 6000 | 65 | 71 | 0.017 | 0.034 | 30 | 60 | |
Average | 4400 | 68 | 0.026 | 45 |
PV Investment Cost (€/kW) | PV Storage Cost (€/kWh) | PV O&M Fixed Costs (€/kW) | Storage O&M Fixed Costs (€/kW) | Capacity Factor (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Low | High | Low | High | Low | High | Low | High | Low | High | |
600 | 1200 | 200 | 900 | 9 | 20 | 5 | 12 | 13 | 27 | |
Average | 900 | 550 | 14.5 | 8.5 | 20 |
Wind Investment Cost (€/kW) | Wind Storage Cost (€/kWh) | Wind O&M Fixed Costs (€/kW) | Wind O&M Variable Costs (€/kWh) | Storage O&M Fixed Costs (€/kW) | Capacity Factor (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Low | High | Low | High | Low | High | Low | High | Low | High | Low | High | |
3100 | 5100 | 200 | 900 | 75 | 130 | 0.01 | 0.02 | 5 | 12 | 40 | 55 | |
Average | 4100 | 550 | 102.5 | 0.015 | 8.5 | 47.5 |
Investment Cost (€/kW) | O&M Fixed Costs (€/kW) | O&M Variable Costs (€/kWh) | Capacity Factor (%) | Discount Rate (%) | Electricity Price (€/kWh) | Ancillary Services (€/kWh) |
---|---|---|---|---|---|---|
Average Values | ||||||
4400 | 68 | 0.026 | 45 | 7.5 | 0.05 | 0.025 |
Ranges | ||||||
Increase of 200 € in three ranges:
| Increase of 0.5 in the range of 65–71 | Increase of 0.001 in the range of 0.017–0.034 | Three ranges:
| Increase of 0.1 in the range of 6–9 | 0.04–0.06 | 0.01–0.04 |
PV Investment Cost (€/kW) | PV Storage Cost (€/kWh) | PV O&M Fixed Costs (€/kW) | Storage O&M Fixed Costs (€/kW) | Capacity Factor (%) | Discount Rate (%) | Electricity Price (€/kWh) | Ancillary Services (€/kWh) |
---|---|---|---|---|---|---|---|
Average Values | |||||||
900 | 550 | 14.5 | 8.5 | 20 | 7.5 | 0.05 | 0.025 |
Ranges | |||||||
Increase of 50 in the range of 600–1200 | Increase of 50 in the range of 200–900 | Increase of 0.5 in the range of 9–20 | Increase of 0.5 in the range of 5–12 | Increase of 1% € in the range of 13–27 | Increase of 0.1 in the range of 6–9 | 0.04–0.06 | 0.01–0.04 |
Wind Investment Cost (€/kW) | Wind Storage Cost (€/kWh) | Wind O&M Fixed Costs (€/kW) | Wind O&M Variable Costs (€/kWh) | Storage O&M Fixed Costs (€/kW) | Capacity Factor (%) | Discount Rate (%) | Electricity Price (€/kWh) | Ancillary Services (€/kWh) |
---|---|---|---|---|---|---|---|---|
Average Values | ||||||||
4100 | 550 | 102.5 | 0.015 | 8.5 | 47.5 | 7.5 | 0.05 | 0.025 |
Ranges | ||||||||
Increase of 100 in the range of 3100–5100 | Increase of 50 in the range of 200–900 | Increase of 5 in the range of 75–130 | Increase of 0.001 in the range of 0.01–0.02 | Increase of 0.5 € in the range of 5–12 | Increase of 1 in the range of 40–55 | Increase of 0.1 in the range of 6–9 | 0.04–0.06 | 0.01–0.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulou, A.G.; Vasileiou, G.; Flamos, A. A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power? Energies 2020, 13, 4768. https://doi.org/10.3390/en13184768
Papadopoulou AG, Vasileiou G, Flamos A. A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power? Energies. 2020; 13(18):4768. https://doi.org/10.3390/en13184768
Chicago/Turabian StylePapadopoulou, Alexandra G., George Vasileiou, and Alexandros Flamos. 2020. "A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power?" Energies 13, no. 18: 4768. https://doi.org/10.3390/en13184768
APA StylePapadopoulou, A. G., Vasileiou, G., & Flamos, A. (2020). A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power? Energies, 13(18), 4768. https://doi.org/10.3390/en13184768