A Comparison of Various Bottom-Up Urban Energy Simulation Methods Using a Case Study in Hangzhou, China
Abstract
:1. Introduction
2. Bottom-Up Approach for Urban Energy Simulation
2.1. Physical Model Method
2.2. Data-Driven Model Method
2.3. Hybrid Model Method
- A hybrid of engineering and artificial intelligence models: This model involves the estimation of optimal physical parameters of the machine learning algorithm and the combination of the optimized one-dimensional heat transfer models (usually genetic algorithms).
- Hybrid of artificial intelligence and statistical models: This model includes a learning model describing residential behavior by statistical methods.
- Hybrid of engineering and statistics models: This model combines physical models and statistical models when physical models are inadequate or inaccurate.
3. Methodology
3.1. The Case: Hangzhou South Railway Station (HSRS) Area
3.2. Urban Geometric Model
- In plane modeling, the modeling strategy is used to model the zigzag extension edge of the same side of the contour line to a neat edge line and model each bump edge in the same curve extension edge in the contour to a smooth curve. If the span of a single concave wall or convex wall exceeds the span threshold value, the walls on both sides adjacent to the concave wall or convex wall are considered to be discontinuous walls.
- When modeling the zigzag extension sideline of the same side of the contour line to a neat sideline, it is necessary to merge and align each convex or concave sideline to the basic straight sideline. The basic straight sideline is the flat sideline with the longest length proportion in the sideline of the same side, as shown in the dotted box at a, d, e, f, g, h, and i in Figure 4. When modeling the convex and concave sidelines in the same curve extension sideline in the contour line to a smooth curve, it is necessary to merge and align the convex or concave sidelines to the curved continuous sideline, and the merging position, and the curve continuous sideline should maintain the same curve extension to form a smooth curve sideline, as shown in the dotted box at b and c in Figure 4.
3.3. Physical Model Method (Multi-Zone)
3.3.1. The Components of the Physical Model
3.3.2. Parameter Settings of the Physical Model
3.4. Physical Model Method (Single-Zone)
3.5. Data-Driven Model Method (Regression)
3.5.1. Urban Energy Consumption Data
3.5.2. Regression Model for Individual Buildings
3.5.3. Urban Energy Simulation Using the Regression Model
3.6. Data-Driven Model Method (Artificial Neural Network)
3.6.1. Urban Energy Consumption Data
3.6.2. Training of the ANN for Individual Energy Consumption
3.6.3. Urban Energy Simulation Using the ANN
4. Results and Analysis
4.1. Urban Energy Consumption Patterns
4.1.1. Comparison of the Urban Energy Consumption
4.1.2. Comparison of the Urban Energy Consumption
4.2. Dynamic Nature of Energy Consumption
4.2.1. The Analyze of Multi-Zone and Single-Zone Model
- Big database
- Real-time monitoring
- Building renovation
4.2.2. The Dynamic Nature of the Multi-Zone and Single-Zone Models
4.3. Simulation Performance
4.4. Limitations and Future Research
5. Conclusions
6. Patents
- Yanxia Li, Xing Shi, Junyan Yang, Xinkai Zhang, Annan Wang. A modeling method of urban building energy consumption model, 2018.
- Yanxia Li, Binghui Si, Xing Shi, Dian Zhang, Yue Wu. A simulation system for urban buildings’ energy consumption, 2019.
Author Contributions
Funding
Conflicts of Interest
References
- Wang, S.; Fang, C.; Guan, X.; Pang, B.; Ma, H. Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces. Appl. Energy 2014, 136, 738–749. [Google Scholar] [CrossRef]
- Van De Wal, R.S.W.; De Boer, B.; Lourens, L.J.; Köhler, P.; Bintanja, R. Reconstruction of a continuous high-resolution CO2 record over the past 20 million years. Clim. Past 2011, 7, 1459–1469. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospects: 2015 Revision; United Nations, Department of Economics and Social Affairs, Population Division: New York, NY, USA, 2015. [Google Scholar]
- United Nations. World Urbanization Prospects: 2014 Revision; United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2014. [Google Scholar]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed]
- United Nations. World Urbanization Prospects: The 2009 Revision; United Nations: New York, NY, USA, 2010. [Google Scholar]
- UN-Habitat. Energy. 2012. Available online: http://unhabitat.org/urbanthemes/energy/ (accessed on 8 November 2016).
- Chambers, A.; Nakicenovic, N. World Energy Outlook 2008; IEA/OECD: Paris, France, 2008. [Google Scholar]
- Sovacool, B.K.; Brown, M.A. Twelve metropolitan carbon footprints: A preliminary comparative global assessment. Energy Policy 2010, 38, 4856–4869. [Google Scholar] [CrossRef]
- Grübler, A.; Bai, X.; Buettner, T.; Dhakal, S.; Fisk, D.; Ichinose, T.; Keirstead, J.; Sammer, G.; Satterthwaite, D.; Schulz, N.B.; et al. Urban Energy Systems. In Global Energy Assessment (GEA); Cambridge University Press (CUP): Cambridge, UK, 2012; pp. 1307–1400. [Google Scholar] [CrossRef]
- UNEP. Cities and Climate Change. 2015. Available online: http://www.unep.org/resourceefficiency/Policy/ResourceEfficientCities/FocusAreas/CitiesandClimateChange/tabid/101665/Default.asp (accessed on 5 June 2016).
- Chalal, M.L.; Benachir, M.; White, M.; Shrahily, R. Energy planning and forecasting approaches for supporting physical improvement strategies in the building sector: A review. Renew. Sustain. Energy Rev. 2016, 64, 761–776. [Google Scholar] [CrossRef]
- Yang, Z.; Ghahramani, A.; Becerik-Gerber, B. Building occupancy diversity and HVAC (heating, ventilation, and air conditioning) system energy efficiency. Energy 2016, 109, 641–649. [Google Scholar] [CrossRef]
- Becker, S.; Frew, B.A.; Andresen, G.B.; Jacobson, M.Z.; Schramm, S.; Greiner, M. Renewable build-up pathways for the US: Generation costs are not system costs. Energy 2015, 81, 437–445. [Google Scholar] [CrossRef]
- Comodi, G.; Cioccolanti, L.; Renzi, M. Modelling the Italian household sector at the municipal scale: Micro-CHP, renewables and energy efficiency. Energy 2014, 68, 92–103. [Google Scholar] [CrossRef]
- Broin, E.Ó.; Mata, É.; Göransson, A.; Johnsson, F. The effect of improved efficiency on energy savings in EU-27 buildings. Energy 2013, 57, 134–148. [Google Scholar] [CrossRef]
- Parshall, L.; Gurney, K.; Hammer, S.A.; Mendoza, D.; Zhou, Y.; Geethakumar, S. Modeling energy consumption and CO2 emissions at the urban scale: Methodological challenges and insights from the United States. Energy Policy 2010, 38, 4765–4782. [Google Scholar] [CrossRef]
- Davila, C.C.; Reinhart, C.F.; Bemis, J.L. Modeling Boston: A workflow for the efficient generation and maintenance of urban building energy models from existing geospatial datasets. Energy 2016, 117, 237–250. [Google Scholar] [CrossRef]
- Sola, A.; Corchero, C.; Salom, J.; Sanmarti, M. Simulation Tools to Build Urban-Scale Energy Models: A Review. Energies 2018, 11, 3269. [Google Scholar] [CrossRef]
- Shi, Z.; Fonseca, J.A.; Schlueter, A. A review of simulation-based urban form generation and optimization for energy-driven urban design. Build. Environ. 2017, 121, 119–129. [Google Scholar] [CrossRef]
- Aydinalp, M.; Ugursal, V.I.; Fung, A.S. Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks. Appl. Energy 2002, 71, 87–110. [Google Scholar] [CrossRef]
- U.S. Green Building Council (USGBC). Green Building Design and Construction; U.S. Green Building Council (USGBC): Washington, DC, USA, 2009. [Google Scholar]
- Barlow, S. Guide to BREEAM; RIBA Publishing: London, UK, 2011. [Google Scholar]
- Green Chinese Building Evaluation Label. Available online: http://www.cngb.org.cn/ (accessed on 24 November 2015).
- Shi, X.; Tian, Z.; Chen, W.; Si, B.; Jin, X. A review on building energy efficient design optimization rom the perspective of architects. Renew. Sustain. Energy Rev. 2016, 65, 872–884. [Google Scholar] [CrossRef]
- Chen, Y.; Hong, T.; Piette, M.A. City-Scale Building Retrofit Analysis: A Case Study using CityBES. In Proceedings of the 15th IBPSA Conference, San Francisco, CA, USA, 7–9 August 2017; pp. 1084–1091. [Google Scholar]
- Tardioli, G.; Kerrigan, R.; Oates, M.; O’Donnell, J.; Finn, D. Data Driven Approaches for Prediction of Building Energy Consumption at Urban Level. Energy Procedia 2015, 78, 3378–3383. [Google Scholar] [CrossRef]
- Li, W.; Zhou, Y.; Cetin, K.; Eom, J.; Wang, Y.; Chen, G.; Zhang, X. Modeling urban building energy use: A review of modeling approaches and procedures. Energy 2017, 141, 2445–2457. [Google Scholar] [CrossRef]
- Swan, L.G.; Ugursal, V.I. Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renew. Sustain. Energy Rev. 2009, 13, 1819–1835. [Google Scholar] [CrossRef]
- Kavgic, M.; Mavrogianni, A.; Mumovic, D.; Summerfield, A.; Stevanovic, Z.; Djurovic-Petrovic, M. A review of bottom-up building stock models for energy consumption in the residential sector. Build. Environ. 2010, 45, 1683–1697. [Google Scholar] [CrossRef]
- Chen, Y.; Hong, T. Impacts of building geometry modeling methods on the simulation results of urban building energy models. Appl. Energy 2018, 215, 717–735. [Google Scholar] [CrossRef]
- Fernandez-Antolin, M.-M.; Del Río, J.M.; González-Lezcano, R. Influence of Solar Reflectance and Renewable Energies on Residential Heating and Cooling Demand in Sustainable Architecture: A Case Study in Different Climate Zones in Spain Considering Their Urban Contexts. Sustainability 2019, 11, 6782. [Google Scholar] [CrossRef]
- Nouvel, R.; Zirak, M.; Dastageeri, H.; Coors, V.; Eicker, U. Urban energy analysis based on 3D city model for national scale applications. In Proceedings of the IBPSA Germany Conference, Aachen, Germany, 22–24 September 2014; Volume 8. [Google Scholar]
- Bentzen, J.; Engsted, T. A revival of the autoregressive distributed lag model in estimating energy demand relationships. Energy 2001, 26, 45–55. [Google Scholar] [CrossRef]
- Zhang, Q. Residential energy consumption in China and its comparison with Japan, Canada, and USA. Energy Build. 2004, 36, 1217–1225. [Google Scholar] [CrossRef]
- Fonseca, J.A.; Schlueter, A. Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts. Appl. Energy 2015, 142, 247–265. [Google Scholar] [CrossRef]
- Reinhart, C.; Davila, C.C. Urban building energy modeling—A review of a nascent field. Build. Environ. 2016, 97, 196–202. [Google Scholar] [CrossRef]
- Kruger, A.; Kolbe, T.H. Building Analysis for Urban Energy Planning Using Key Indicators on Virtual 3D City Models—The Energy Atlas of Berlin. Proc. ISPRS Congr. 2012, 145–150. [Google Scholar] [CrossRef]
- Gröger, G.; Plümer, L. CityGML—Interoperable semantic 3D city models. ISPRS J. Photogramm. Remote Sens. 2012, 71, 12–33. [Google Scholar] [CrossRef]
- Papadopoulos, G.; Edwards, P.; Murray, A. Confidence estimation methods for neural networks: A practical comparison. IEEE Trans. Neural Netw. 2001, 12, 1278–1287. [Google Scholar] [CrossRef]
- Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [Google Scholar] [CrossRef]
- Parti, M.; Parti, C. The Total and Appliance-Specific Conditional Demand for Electricity in the Household Sector. Bell J. Econ. 1980, 11, 309. [Google Scholar] [CrossRef]
- Yilmaz, L.; Chan, W.K.V.; Moon, I.; Roeder, T.M.K.; Macal, C.; Rossetti, M.D. A review of artificial intelligence based building energy prediction with a focus on ensemble prediction models. In Proceedings of the 2015 Winter Simulation Conference, Huntington Beach, CA, USA, 6–9 December 2015. [Google Scholar]
- Zhao, H.-X.; Magoulès, F. A review on the prediction of building energy consumption. Renew. Sustain. Energy Rev. 2012, 16, 3586–3592. [Google Scholar] [CrossRef]
- Koksal, M.A.; Ugursal, V.I. Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector. Appl. Energy 2008, 85, 271–296. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Artificial neural networks in energy applications in buildings. Int. J. Low-Carbon Technol. 2006, 1, 201–216. [Google Scholar] [CrossRef]
- Caputo, P.; Costa, G.; Ferrari, S. A supporting method for defining energy strategies in the building sector at urban scale. Energy Policy 2013, 55, 261–270. [Google Scholar] [CrossRef]
- Ascione, F.; De Masi, R.F.; Rossi, F.D.; Fistola, R.; Sasso, M.; Vanoli, G.P. Analysis and diagnosis of the energy performance of buildings and districts: Methodology, validation and development of Urban Energy Maps. Cities 2013, 35, 270–283. [Google Scholar] [CrossRef]
- Ascione, F.; Canelli, M.; De Masi, R.F.; Sasso, M.; Vanoli, G.P. Combined cooling, heating and power for small urban districts: An Italian case-study. Appl. Therm. Eng. 2014, 71, 705–713. [Google Scholar] [CrossRef]
- Taylor, S.C.; Fan, D.; Rylatt, R.M. Enabling urban-scale energy modelling: A new spatial approach. Build. Res. Inf. 2013, 42, 4–16. [Google Scholar] [CrossRef]
- Mastrucci, A.; Baume, O.; Stazi, F.; Leopold, U. Estimating energy savings for the residential building stock of an entire city: A GIS-based statistical downscaling approach applied to Rotterdam. Energy Build. 2014, 75, 358–367. [Google Scholar] [CrossRef]
- Jones, P.; Patterson, J.; Lannon, S. Modelling the built environment at an urban scale—Energy and health impacts in relation to housing. Landsc. Urban Plan. 2007, 83, 39–49. [Google Scholar] [CrossRef]
- Orehounig, K.; Mavromatidis, G.; Evins, R.; Dorer, V.; Carmeliet, J. Towards an energy sustainable community: An energy system analysis for a village in Switzerland. Energy Build. 2014, 84, 277–286. [Google Scholar] [CrossRef]
- Kaempf, J.; Robinson, D. A simplified thermal model to support analysis of urban resource flows. Energy Build. 2007, 39, 445–453. [Google Scholar] [CrossRef]
- Robinson, D.H.; Kämpf, J.; Leroux, P.; Perez, D.; Rasheed, A.; Wilke, U. CITYSIM: Comprehensive micro-simulation of resource flows for sustainable urban planning. In Proceedings of the Eleventh International IBPSA Conference, Glasgow, UK, 27–30 July 2009. [Google Scholar]
- Nielsen, H.A.; Madsen, H. Modelling the heat consumption in district heating systems using a grey-box approach. Energy Build. 2006, 38, 63–71. [Google Scholar] [CrossRef]
- Lauster, M.; Teichmann, J.; Fuchs, M.; Streblow, R.; Mueller, D. Low order thermal network models for dynamic simulations of buildings on city district scale. Build. Environ. 2014, 73, 223–231. [Google Scholar] [CrossRef]
- Kim, E.-J.; Plessis, G.; Hubert, J.-L.; Roux, J.-J. Urban energy simulation: Simplification and reduction of building envelope models. Energy Build. 2014, 84, 193–202. [Google Scholar] [CrossRef]
- Swan, L.; Ugursal, V.I.; Beausoleil-Morrison, I. Implementation of a Canadian residential energy end-use model for assessing new technology impact. In Proceedings of the Eleventh International IBPSA Conference, Glasgow, UK, 27–30 July 2009. [Google Scholar]
- Mohmed, A.; Ugursal, V.I.; Beausoleil-Morrison, I. A new methodology to predict the GHG emission reductions due to electricity savings in the residential sector. In Proceedings of the Third Canadian Solar Buildings Conference, Fredericton, NB, Canada, 20–22 August 2008. [Google Scholar]
- Aydinalp, M.; Ugursal, V.I.; Fung, A.S. Modeling of the space and domestic hot-water heating energy-consumption in the residential sector using neural networks. Appl. Energy 2004, 79, 159–178. [Google Scholar] [CrossRef]
- Znouda, E.; Ghrab-Morcos, N.; Hadj-Alouane, A. Optimization of Mediterranean building design using genetic algorithms. Energy Build. 2007, 39, 148–153. [Google Scholar] [CrossRef]
- Tuhus-Dubrow, D.; Krarti, M. Genetic-algorithm based approach to optimize building envelope design for residential buildings. Build. Environ. 2010, 45, 1574–1581. [Google Scholar] [CrossRef]
- Foucquier, A.; Robert, S.; Suard, F.; Stephan, L.; Jay, A. State of the art in building modelling and energy performances prediction: A review. Renew. Sustain. Energy Rev. 2013, 23, 272–288. [Google Scholar] [CrossRef]
Methods | Data-Driven Model Method | Hybrid Model Method | Physical Model Method (Simplified) | Physical Model Method (Archetype) | Physical Model Method (Detailed) |
---|---|---|---|---|---|
Advantages | • Accurate prediction • Statistical regression method | • Fast processing speed • Small simulation load | • Small workload • Fast processing speed | • Moderate workload • Fast calculation speed • Good accuracy at a large scale | • High accuracy and good universality • Suitable for macro, meso, and micro scale |
Limitations | • Limited scalability • Difficult to integrate with urban forms | • Limited scalability • General accuracy | • General precision • Building parameters ignorance | • Ignorance of the heterogeneity of same buildings • Insufficient accuracy | • Large workload • Slow calculation speed • High data requirements |
Building Type | Glazing Ratio | Lighting Load | Equipment Load | Occupant Density | Air Infiltration | Fresh Air Volume | |||
---|---|---|---|---|---|---|---|---|---|
East | South | West | North | ||||||
Residential buildings | 0.17 | 0.22 | 0.07 | 0.19 | 7 w/m2 | 4.3 w/m2 | 0.05 people/m2 | 0.00025 m3/s−1·m−2 | / |
Public buildings | 0.17 | 0.3 | 0.07 | 0.25 | 10 w/m2 | 7.64 w/m2 | 0.325 people/m2 | 0.00021 m3/s−1·m−2 | 0.0002 m3/s−1·m−2 |
Schedule Number | Hours | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
1 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0.5 |
2 * | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 1 | 1 | 1 | 0.5 |
3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.50 | 0.95 | 0.95 | 0.95 | 0.50 | 0.50 | 0.95 | 0.95 | 0.95 | 0.95 | 0.30 | 0.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
4 * | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 * | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
8 * | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 1.0 | 1.0 | 1.0 | 1.0 |
10 * | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 1.0 | 1.0 | 1.0 | 1.0 |
11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.50 | 0.95 | 0.95 | 0.95 | 0.80 | 0.80 | 0.95 | 0.95 | 0.95 | 0.95 | 0.30 | 0.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0.5 | 0.5 | 0.5 | 0 |
13 * | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0.5 | 0.5 | 0.5 | 0 |
Schedule Number | Hours | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
1 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 26 | 26 | 26 | 26 |
2 * | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 |
3 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 60 | 60 | 60 | 60 | 60 |
4 * | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 |
5 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | −40 | −40 | −40 | −40 | −40 | −40 | −40 | −40 | −40 | −40 | 20 | 20 | 20 | 20 | 20 | 20 |
6 * | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
7 | −40 | −40 | −40 | −40 | −40 | −40 | −40 | −40 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | −40 | −40 | −40 | −40 | −40 |
8 * | −40 | −40 | −40 | −40 | −40 | −40 | −40 | −40 | −40 | −40 | −40 | −40 | −40 | −40 | −40 | −40 | −40 | −40 | −40 | −40 | −40 | −40 | −40 | −40 |
Indicators | Multi-Zone | Single-Zone | Linear Regression | ANN | Average Value |
---|---|---|---|---|---|
Total annual energy consumption (kW·h) | 3.3 × 108 | 3.3 × 108 | 2.3 × 108 | 2.6 × 108 | 2.9 × 108 |
Total annual residential energy consumption (kW·h) | 8.0 × 107 | 8.5 × 107 | 6.9 × 107 | 6.3 × 107 | 7.4 × 107 |
Total annual energy consumption of public buildings (kW·h) | 2.5 × 108 | 2.4 × 108 | 1.6 × 108 | 2.0 × 108 | 2.1 × 108 |
Energy consumption per unit area (kW·h/m2) | 60.72 | 71.34 | 40.86 | 41.11 | 53.51 |
Energy consumption per unit area of residential buildings (kW·h/m2) | 50.28 | 54.42 | 39.90 | 35.20 | 44.95 |
Energy consumption per unit area of public buildings (kW·h/m2) | 72.66 | 90.70 | 41.96 | 47.90 | 63.31 |
Urban Energy Simulation Method | Data Required | Simulation Workflow Development | Intervention Scale | Simulation Speed (s) |
---|---|---|---|---|
The multi-zone model | Geometric data (2D footprint polygons, building heights), non-geometric data (weather documents, occupant density, transparency ratio, etc.). | GIS, Rhino, Grasshopper, EnergyPlus | micro, meso, macro | 310,320 |
The single-zone model | 2 D footprint polygons, building heights, weather documents, occupant density, transparency ratio, etc. | GIS, Rhino, Grasshopper, EnergyPlus | micro, meso, macro | 87,120 |
The regression method | Building type, building area, construction age, heat transfer coefficient of windows, etc. Measured data | Adobe Acrobat Pro, Visual Studio Code Excel, Matlab | meso, macro | 1–1.4 |
The artificial neural network method | Building type, building area, construction age, heat transfer coefficient of windows, etc. Measured data | Adobe Acrobat Pro, Visual Studio Code, Excel, Matlab | meso, macro | 1–1.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, C.; Zhu, S.; Yang, J.; Wei, S.; Zhang, X.; Shi, X. A Comparison of Various Bottom-Up Urban Energy Simulation Methods Using a Case Study in Hangzhou, China. Energies 2020, 13, 4781. https://doi.org/10.3390/en13184781
Li Y, Wang C, Zhu S, Yang J, Wei S, Zhang X, Shi X. A Comparison of Various Bottom-Up Urban Energy Simulation Methods Using a Case Study in Hangzhou, China. Energies. 2020; 13(18):4781. https://doi.org/10.3390/en13184781
Chicago/Turabian StyleLi, Yanxia, Chao Wang, Sijie Zhu, Junyan Yang, Shen Wei, Xinkai Zhang, and Xing Shi. 2020. "A Comparison of Various Bottom-Up Urban Energy Simulation Methods Using a Case Study in Hangzhou, China" Energies 13, no. 18: 4781. https://doi.org/10.3390/en13184781
APA StyleLi, Y., Wang, C., Zhu, S., Yang, J., Wei, S., Zhang, X., & Shi, X. (2020). A Comparison of Various Bottom-Up Urban Energy Simulation Methods Using a Case Study in Hangzhou, China. Energies, 13(18), 4781. https://doi.org/10.3390/en13184781