Willow Cultivation as Feedstock for Bioenergy-External Production Cost
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Internal Cost
2.3. External Cost
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rodias, E.; Berruto, R.; Bochtis, D.; Sopegno, A.; Busato, P. Green, Yellow, and Woody Biomass Supply-Chain Management: A Review. Energies 2019, 12, 3020. [Google Scholar] [CrossRef] [Green Version]
- Stolarski, M.J.; Szczukowski, S.; Krzyżaniak, M.; Tworkowski, J. Energy Value of Yield and Biomass Quality in a 7-Year Rotation of Willow Cultivated on Marginal Soil. Energies 2020, 13, 2144. [Google Scholar] [CrossRef]
- Picchio, R.; Latterini, F.; Venanzi, R.; Stefanoni, W.; Suardi, A.; Tocci, D.; Pari, L. Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation. Energies 2020, 13, 2937. [Google Scholar] [CrossRef]
- Eisenbies, M.H.; Volk, T.A.; Souza, D.P.L.; Hallen, K.W. Cut-and-chip Harvester Material Capacity and Fuel Performance on Commercial-scale Willow Fields for Varying Ground and Crop Conditions. GCB Bioenergy 2020, 12, 380–395. [Google Scholar] [CrossRef] [Green Version]
- Volk, T.A.; Heavey, J.P.; Eisenbies, M.H. Advances in Shrub-Willow Crops for Bioenergy, Renewable Products, and Environmental Benefits. Food Energy Secur. 2016, 5, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Stolarski, M.J.; Krzyzaniak, M.; Tworkowski, J.; Szczukowski, S.; Gołaszewski, J. Energy Intensity and Energy Ratio in Producing Willow Chips as Feedstock for an Integrated Biorefinery. Biosyst. Eng. 2014, 123, 19–28. [Google Scholar] [CrossRef]
- Dias, G.M.; Ayer, N.W.; Kariyapperuma, K.; Thevathasan, N.; Gordon, A.; Sidders, D.; Johannesson, G.H. Life Cycle Assessment of Thermal Energy Production from Short-Rotation Willow Biomass in Southern Ontario, Canada. Appl. Energy 2017, 204, 343–352. [Google Scholar] [CrossRef]
- Djomo, S.N.; El Kasmioui, O.; Ceulemans, R. Energy and Greenhouse Gas Balance of Bioenergy Production from Poplar and Willow: A Review. GCB Bioenergy 2011, 3, 181–197. [Google Scholar] [CrossRef]
- Carroll, J.P.; Finnan, J. Physical and Chemical Properties of Pellets from Energy Crops and Cereal Straws. Biosyst. Eng. 2012, 112, 151–159. [Google Scholar] [CrossRef]
- Zamora, D.S.; Apostol, K.G.; Wyatt, G.J. Biomass Production and Potential Ethanol Yields of Shrub Willow Hybrids and Native Willow Accessions after a Single 3-Year Harvest Cycle on Marginal Lands in Central Minnesota, USA. Agrofor. Syst. 2014, 88, 593–606. [Google Scholar] [CrossRef]
- González-García, S.; Mola-Yudego, B.; Murphy, R.J. Life Cycle Assessment of Potential Energy Uses for Short Rotation Willow Biomass in Sweden. Int. J. Life Cycle Assess. 2013, 18, 783–795. [Google Scholar] [CrossRef]
- Liu, W.; Wang, J.; Richard, T.L.; Hartley, D.S.; Spatari, S.; Volk, T.A. Economic and life cycle assessments of biomass utilization for bioenergy products. Biofuel Bioprod. Biorefin. 2017, 11, 633–647. [Google Scholar] [CrossRef]
- Giuliano, A.; De Bari, I.; Motola, V.; Pierro, N.; Giocoli, A.; Barletta, D. Techno-environmental assessment of two biorefinery systems to valorise the residual lignocellulosic biomass of the Basilicata region. Math. Model. Eng. Probl. 2019, 6, 317–323. [Google Scholar] [CrossRef]
- Sleight, N.J.; Volk, T.A.; Johnson, G.A.; Eisenbies, M.H.; Shi, S.; Fabio, E.S.; Pooler, P.S. Change in Yield Between First and Second Rotations in Willow (Salix Spp.) Biomass Crops Is Strongly Related to the Level of First Rotation Yield. Bioenergy Res. 2016, 9, 270–287. [Google Scholar] [CrossRef]
- El Kasmioui, O.; Ceulemans, R. Financial Analysis of the Cultivation of Short Rotation Woody Crops for Bioenergy in Belgium: Barriers and Opportunities. Bioenergy Res. 2013, 6, 336–350. [Google Scholar] [CrossRef]
- Buchholz, T.; Volk, T.A. Improving the Profitability of Willow Crops-Identifying Opportunities with a Crop Budget Model. Bioenergy Res. 2011, 4, 85–95. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Olba-Zięty, E.; Rosenqvist, H.; Krzyżaniak, M. Economic Efficiency of Willow, Poplar and Black Locust Production Using Different Soil Amendments. Biomass Bioenergy 2017, 106, 74–82. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Rosenqvist, H.; Krzyzaniak, M.; Szczukowski, S.; Tworkowski, J.; Gołaszewski, J.; Olba-Ziety, E. Economic Comparison of Growing Different Willow Cultivars. Biomass Bioenergy 2015, 81, 210–215. [Google Scholar] [CrossRef]
- Bressler, A.S.; Vidon, P.G.; Volk, T.A. Impact of Shrub Willow (Salix Spp.) as a Potential Bioenergy Feedstock on Water Quality and Greenhouse Gas Emissions. Water Air Soil Pollut. 2017, 228, 170. [Google Scholar] [CrossRef]
- Amichev, B.Y.; Kurz, W.A.; Smyth, C.; Rees, K.C.J. The Carbon Implications of Large-Scale Afforestation of Agriculturally Marginal Land with Short-Rotation Willow in Saskatchewan. GCB Bioenergy 2012, 4, 70–87. [Google Scholar] [CrossRef]
- Mehmood, M.A.; Ibrahim, M.; Rashid, U.; Nawaz, M.; Ali, S.; Hussain, A.; Gull, M. Biomass Production for Bioenergy Using Marginal Lands. Sustain. Prod. Consum. 2017, 9, 3–21. [Google Scholar] [CrossRef]
- Caputo, J.; Balogh, S.B.; Volk, T.A.; Johnson, L.; Puettmann, M.; Lippke, B.; Oneil, E. Incorporating Uncertainty into a Life Cycle Assessment (LCA) Model of Short-Rotation Willow Biomass (Salix Spp.) Crops. Bioenergy Res. 2014, 7, 48–59. [Google Scholar] [CrossRef]
- Hammar, T.; Stendahl, J.; Sundberg, C.; Holmström, H.; Hansson, P.A. Climate Impact and Energy Efficiency of Woody Bioenergy Systems from a Landscape Perspective. Biomass Bioenergy 2019, 120, 189–199. [Google Scholar] [CrossRef]
- Krzyżaniak, M.; Stolarski, M.J.; Szczukowski, S.; Tworkowski, J. Life Cycle Assessment of New Willow Cultivars Grown as Feedstock for Integrated Biorefineries. Bioenergy Res. 2016, 9, 224–238. [Google Scholar] [CrossRef] [Green Version]
- Cherubini, F.; Bird, N.D.; Cowie, A.; Jungmeier, G.; Schlamadinger, B.; Woess-Gallasch, S. Energy- and Greenhouse Gas-Based LCA of Biofuel and Bioenergy Systems: Key Issues, Ranges and Recommendations. Resour. Conserv. Recycl. 2009, 53, 434–447. [Google Scholar] [CrossRef]
- Tonini, D.; Hamelin, L.; Wenzel, H.; Astrup, T. Bioenergy Production from Perennial Energy Crops: A Consequential LCA of 12 Bioenergy Scenarios Including Land Use Changes. Environ. Sci. Technol. 2012, 46, 13521–13530. [Google Scholar] [CrossRef] [Green Version]
- Heller, M.C.; Keoleian, G.A.; Volk, T.A. Life Cycle Assessment of a Willow Bioenergy Cropping System. Biomass Bioenergy 2003, 25, 147–165. [Google Scholar] [CrossRef]
- Cherubini, F.; Strømman, A.H. Life Cycle Assessment of Bioenergy Systems: State of the Art and Future Challenges. Bioresour. Technol. 2011, 102, 437–451. [Google Scholar] [CrossRef]
- Dasclu, C.; Caraiani, C.; Guşe, R.; Lungu, C.; Colceag, F. Full Cost Accounting and Social Environmental Effects on Global Warming Phenomenon. Int. J. Account. Inf. Manag. 2010, 18, 19–30. [Google Scholar] [CrossRef]
- Stern, N. The Economics of Climate Change: The Stern Review; Cambridge University Press: Cambridge, UK, 2006; p. 692. [Google Scholar]
- Pizzol, M.; Weidema, B.; Brandão, M.; Osset, P. Monetary Valuation in Life Cycle Assessment: A Review. J. Clean. Prod. 2015, 86, 170–179. [Google Scholar] [CrossRef]
- Bickel, P.; Friedrich, R. ExternE Externalities of Energy: Methodology 2005 Update; Office for Official Publications of the European Communities: Stuttgart, Germany, 2005; p. 270. [Google Scholar]
- Weidema, B.P.; Weidema, P.B.; Weidema, B.P. Using the Budget Constraint to Monetarise Impact Assessment Results. Ecol. Econ. 2009, 68, 1591–1598. [Google Scholar] [CrossRef]
- Nguyen, T.L.T.; Laratte, B.; Guillaume, B.; Hua, A. Quantifying environmental externalities with a view to internalizing them in the price of products, using different monetization models. Resour. Conserv. Recycl. 2016, 109, 13–23. [Google Scholar] [CrossRef]
- Ahlroth, S.; Finnveden, G. Ecovalue08—A New Valuation Set for Environmental Systems Analysis Tools. J. Clean. Prod. 2011, 19, 1994–2003. [Google Scholar] [CrossRef]
- Ahlroth, S. The Use of Valuation and Weighting Sets in Environmental Impact Assessment. Resour. Conserv. Recycl. 2014, 85, 34–41. [Google Scholar] [CrossRef]
- Dong, Y.; Hauschild, M.; Sørup, H.; Rousselet, R.; Fantke, P. Evaluating the Monetary Values of Greenhouse Gases Emissions in Life Cycle Impact Assessment. J. Clean. Prod. 2019, 209, 538–549. [Google Scholar] [CrossRef]
- Steen, B. Calculation of Monetary Values of Environmental Impacts from Emissions and Resource Use The Case of Using the EPS 2015d Impact Assessment Method. J. Sustain. Dev. 2016, 9, 15–33. [Google Scholar] [CrossRef] [Green Version]
- Steen, B. A Systematic Approach to Environmental Priority Strategies in Product Development (EPS): Version 2000—Models and Data of the Default Method; Chalmers Tekniska Högsk: Göteborg, Sweden, 1999. [Google Scholar]
- Finnveden, G.; Eldh, P.; Johansson, J. Weighting in LCA Based on Ecotaxes: Development of a Mid-Point Method and Experiences from Case Studies. Int. J. Life Cycle Assess. 2006, 11, 81–88. [Google Scholar] [CrossRef]
- Johansson, J. A Monetary Valuation Weighting Method for Life Cycle Assessment Based on Environmental Taxes and Fees. Master’s Thesis, Department of Systems Ecology, Stockholm University, Stockholm, Sweden, 1999. [Google Scholar]
- Itsubo, N.; Sakagami, M.; Washida, T.; Kokubu, K.; Inaba, A. Weighting across Safeguard Subjects for LCIA through the Application of Conjoint Analysis. Int. J. Life Cycle Assess. 2004, 9, 196–205. [Google Scholar] [CrossRef]
- Itsubo, N.; Sakagami, M.; Kuriyama, K.; Inaba, A. Statistical Analysis for the Development of National Average Weighting Factors-Visualization of the Variability between Each Individual’s Environmental Thought. Int. J. Life Cycle Assess. 2012, 17, 488–498. [Google Scholar] [CrossRef]
- Vogtländer, J.G.; Brezet, H.C.; Hendriks, C.F. The Virtual Eco-Costs ‘99 A Single LCA-Based Indicator for Sustainability and the Eco-Costs-Value Ratio (EVR) Model for Economic Allocation. Int. J. Life Cycle Assess. 2001, 6, 157–166. [Google Scholar] [CrossRef]
- Vogtlander, J.G.; Bijma, A. The Virtual Pollution Prevention Costs “99” A Single LCA-Based Indicator for Emissions. Int. J. Life Cycle Assess. 2000, 5, 113–124. [Google Scholar] [CrossRef]
- De Bruyn, S.; Bijleveld, M.; de Graaff, L.; Schep, E.; Schroten, A.; Vergeer, R.; Ahdour, S. Environmental Prices Handbook EU28 Version—Methods and Numbers for Valuation of Environmental Impacts; CE Delft: Delft, The Netherlands, 2018. [Google Scholar]
- Notarnicola, B.; Tassiello, G.; Nicoletti, G.M. Environmental and Economic Analysis of the Organic and Conventional Extra-Virgin Olive Oil—A Mediterr. J. Econ. Agric. Environ. 2004, 3, 28–34. [Google Scholar]
- Isacs, L.; Finnveden, G.; Dahllöf, L.; Håkansson, C.; Petersson, L.; Steen, B.; Swanström, L.; Wikström, A. Choosing a Monetary Value of Greenhouse Gases in Assessment Tools: A Comprehensive Review. J. Clean. Prod. 2016, 127, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Pantaleo, A.; Pellerano, A.; Travato, M. Impact of Environmental Externalities on the Competitiveness of Biomass Power Plants. In Proceedings of the 12th European Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, Amsterdam, The Netherlands, 17–21 June 2002; pp. 1300–1305. [Google Scholar]
- Olsthoorn, X.; Tyteca, D.; Wehrmeyer, W.; Wagner, M. Environmental Indicators for Business: A Review of the Literature and Standardisation Methods. J. Clean. Prod. 2001, 9, 453–463. [Google Scholar] [CrossRef]
- Rentizelas, A.; Georgakellos, D. Incorporating Life Cycle External Cost in Optimization of the Electricity Generation Mix. Energy Policy 2014, 65, 134–149. [Google Scholar] [CrossRef] [Green Version]
- Amichev, B.Y.; Hangs, R.D.; Bélanger, N.; Volk, T.A.; Vujanovic, V.; Schoenau, J.J.; Van Rees, K.C.J. First-Rotation Yields of 30 Short-Rotation Willow Cultivars in Central Saskatchewan, Canada. Bioenergy Res. 2015, 8, 292–306. [Google Scholar] [CrossRef]
- Krzyzaniak, M.; Stolarski, M.J.; Waliszewska, B.; Szczukowski, S.; Tworkowski, J.; Załuski, D.; Śnieg, M. Willow Biomass as Feedstock for an Integrated Multi-Product Biorefinery. Ind. Crops Prod. 2014, 58, 230–237. [Google Scholar] [CrossRef]
- ISO. ISO 14008: Monetary Valuation of Environmental Impacts and Related Environmental Aspects. 2019. Available online: https://www.iso.org/standard/43243.html (accessed on 13 February 2020).
- Hauk, S.; Knoke, T.; Wittkopf, S. Economic Evaluation of Short Rotation Coppice Systems for Energy from Biomass—A Review. Renew. Sustain. Energy Rev. 2014, 29, 435–448. [Google Scholar] [CrossRef]
- Olba-Zięty, E.; Stolarski, M.J.; Krzyżaniak, M.; Gołaszewski, J. Environmental External Cost of Poplar Wood Chips Sustainable Production. J. Clean. Prod. 2020, 252. [Google Scholar] [CrossRef]
- Desaigues, B.; Ami, D.; Bartczak, A.; Braun-Kohlová, M.; Chilton, S.; Czajkowski, M.; Farreras, V.; Hunt, A.; Hutchison, M.; Jeanrenaud, C.; et al. Economic Valuation of Air Pollution Mortality: A 9-Country Contingent Valuation Survey of Value of a Life Year (VOLY). Ecol. Indic. 2011, 11, 902–910. [Google Scholar] [CrossRef]
- Havlíčková, K.; Weger, J.; Knápek, J. Modelling of Biomass Prices for Bio-Energy Market in the Czech Republic. Simul. Model. Pract. Theory 2011, 19, 1946–1956. [Google Scholar] [CrossRef]
- Tharakan, P.J.; Volk, T.A.; Lindsey, C.A.; Abrahamson, L.P.; White, E.H. Evaluating the Impact of Three Incentive Programs on the Economics of Cofiring Willow Biomass with Coal in New York State. Energy Policy 2005, 33, 337–347. [Google Scholar] [CrossRef]
- Kusiima, J.M.; Powers, S.E. Monetary Value of the Environmental and Health Externalities Associated with Production of Ethanol from Biomass Feedstocks. Energy Policy 2010, 38, 2785–2796. [Google Scholar] [CrossRef]
- Hafizan, C.; Noor, Z.Z.; Abba, A.H.; Hussein, N. An Alternative Aggregation Method for a Life Cycle Impact Assessment Using an Analytical Hierarchy Process. J. Clean. Prod. 2016, 112, 3244–3255. [Google Scholar] [CrossRef]
- González-García, S.; Iribarren, D.; Susmozas, A.; Dufour, J.; Murphy, R.J. Life Cycle Assessment of Two Alternative Bioenergy Systems Involving Salix Spp. Biomass: Bioethanol Production and Power Generation. Appl. Energy 2012, 95, 111–122. [Google Scholar] [CrossRef]
- Borzecka-Walker, M.; Faber, A.; Pudelko, R.; Kozyra, J.; Syp, A.; Borek, R. Life Cycle Assessment (LCA) of Crops for Energy Production. J. Food Agric. Environ. 2011, 9, 698–700. [Google Scholar]
- Ko, S.; Lautala, P.; Fan, J.; Shonnard, D.R. Economic, Social, and Environmental Cost Optimization of Biomass Transportation: A Regional Model for Transportation Analysis in Plant Location Process. Biofuels Bioprod. Biorefining 2019, 13, 582–598. [Google Scholar] [CrossRef]
- Hammar, T.; Hansson, P.A.; Sundberg, C. Climate Impact Assessment of Willow Energy from a Landscape Perspective: A Swedish Case Study. GCB Bioenergy 2017, 9, 973–985. [Google Scholar] [CrossRef] [Green Version]
- Faber, A.; Pudełko, R.; Borek, R.; Borzecka-Walker, M.; Syp, A.; Krasuska, E.; Mathiou, P. Economic Potential of Perennial Energy Crops in Poland. J. Food Agric. Environ. 2012, 10, 1178–1182. [Google Scholar]
- Pacaldo, R.S.; Volk, T.A.; Briggs, R.D. Greenhouse Gas Potentials of Shrub Willow Biomass Crops Based on Below- and Aboveground Biomass Inventory Along a 19-Year Chronosequence. BioEnergy Res. 2013, 6, 252–262. [Google Scholar] [CrossRef]
- Silalertruksa, T.; Bonnet, S.; Gheewala, S.H. Life Cycle Costing and Externalities of Palm Oil Biodiesel in Thailand. J. Clean. Prod. 2012, 28, 225–232. [Google Scholar] [CrossRef]
- Santoso, A.D. Life Cycle Costing and Externalities of Palm Biodiesel and Algae Biodiesel in Indonesia. RJSITM 2013, 2, 6–15. [Google Scholar]
- Keoleian, G.A.; Volk, T.A. Renewable Energy from Willow Biomass Crops: Life Cycle Energy, Environmental and Economic Performance. CRC Crit. Rev. Plant. Sci. 2005, 24, 385–406. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Zhou, P.; Chang, Y.; Zhou, D.; Pang, M.; Yin, H. Assessing the Environmental Externalities for Biomass- and Coal-Fired Electricity Generation in China: A Supply Chain Perspective. J. Environ. Manag. 2019, 246, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Owen, A.D. Renewable Energy: Externality Costs as Market Barriers. Energy Policy 2006, 34, 632–642. [Google Scholar] [CrossRef]
- Bredemeier, M.; Busch, G.; Hartmann, L.; Jansen, M.; Richter, F.; Lamersdorf, N.P. Fast Growing Plantations for Wood Production—Integration of Ecological Effects and Economic Perspectives. Front. Bioeng. Biotechnol. 2015, 3, 72. [Google Scholar] [CrossRef] [Green Version]
- Ssegane, H.; Zumpf, C.; Cristina Negri, M.; Campbell, P.; Heavey, J.P.; Volk, T.A. The Economics of Growing Shrub Willow as a Bioenergy Buffer on Agricultural Fields: A Case Study in the Midwest Corn Belt. Biofuels Bioprod. Biorefining 2016, 10, 776–789. [Google Scholar] [CrossRef]
- Bressler, A.; Vidon, P.; Hirsch, P.; Volk, T. Valuation of Ecosystem Services of Commercial Shrub Willow (Salix Spp.) Woody Biomass Crops. Environ. Monit. Assess. 2017, 189, 137. [Google Scholar] [CrossRef]
- Brink, C.; van Grinsven, H.; Jacobsen, B.H.; Rabl, A.; Gren, I.-M.; Holland, M.; Klimont, Z.; Hicks, K.; Brouwer, R.; Dickens, R.; et al. Costs and Benefits of Nitrogen in the Environment. In The European Nitrogen Assessment; Sutton, M.A., Howard, C.M., Erisman, J.W., Billen, G., Bleeker, A., Grennfelt, P., Van, G.H., Grizzetti, B., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 513–540. [Google Scholar] [CrossRef]
- Jongeneel, R.; Polman, N.; Van Der Ham, C. Costs and Benefits Associated with the Externalities Generated by Dutch Agriculture. EAAE Congress 2014, 2014, 1–14. [Google Scholar]
- Vanbeveren, S.P.P.; Ceulemans, R. Biodiversity in Short-Rotation Coppice. Renew. Sustain. Energy Rev. 2019, 111, 34–43. [Google Scholar] [CrossRef]
- Feledyn-Szewczyk, B.; Radzikowski, P.; Stalenga, J.; Matyka, M. Comparison of the Effect of Perennial Energy Crops and Arable Crops on Earthworm Populations. Agronomy 2019, 9, 675. [Google Scholar] [CrossRef] [Green Version]
- Czachorowski, S.; Gencza, J.; Buczyński, P.; Pakulnicka, J.; Machałek, N.; Głowacki, Ł.; Kurzątkowska, A. Preliminary Research of Biodiversity in and around Willow Plantaions in Łężany and Samławki. In Lignocellulose Biorefinery—Environmental, Energy and Socio-Economic Conditions; Stolarski, M.J., Gołaszewski, J., Eds.; Wyd. UWM: Olsztyn, Poland, 2015; p. 165. [Google Scholar]
Impact Category | Unit | Environmental Price as External Cost |
---|---|---|
Climate change | €kg CO2 eq−1 | 0.057 |
Ozone depletion | €kg CFC-11 eq−1 | 30.4 |
Human toxicity | €kg 1,4-DB eq−1 | 0.214 |
Photochemical oxidant formation | €kg NMVOC−1 | 2.1 |
Particulate matter formation | €kg PM10 eq−1 | 69 |
Ionising radiation | €kg U235 eq−1 | 0.0473 |
Terrestrial acidification | €kg SO2 eq−1 | 5.4 |
Freshwater eutrophication | €kg P eq−1 | 1.9 |
Marine eutrophication | €kg N eq−1 | 3.11 |
Terrestrial ecotoxicity | €kg 1,4-DB eq−1 | 8.89 |
Freshwater ecotoxicity | €kg 1,4-DB eq−1 | 0.0369 |
Marine ecotoxicity | €kg 1,4-DB eq−1 | 0.00756 |
Agricultural land occupation * | €m2a−1 | 0.0261 |
Urban land occupation * | €m2a−1 | 0.0261 |
Impact Category | Unit | Start | Tur | Turbo | Żubr | UWM 035 | Ekotur | UWM 155 | Average |
---|---|---|---|---|---|---|---|---|---|
Climate change | kg CO2 eq | 45.26 | 74.22 | 46.55 | 27.63 | 59.92 | 31.91 | 108.44 | 44.89 |
Ozone depletion | kg CFC-11 eq | 0.000012 | 0.000017 | 0.000012 | 0.000009 | 0.000014 | 0.000010 | 0.000021 | 0.000012 |
Human toxicity | kg 1,4-DB eq | 12.54 | 19.74 | 12.65 | 7.90 | 15.47 | 8.91 | 25.33 | 11.95 |
Photochemical oxidant formation | kg NMVOC | 0.70 | 0.87 | 0.71 | 0.57 | 0.77 | 0.60 | 1.06 | 0.68 |
Particulate matter formation | kg PM10 eq | 0.26 | 0.35 | 0.26 | 0.19 | 0.30 | 0.21 | 0.44 | 0.25 |
Ionising radiation | kg U235 eq | 5.41 | 7.62 | 5.49 | 3.92 | 6.31 | 4.25 | 9.57 | 5.22 |
Terrestrial acidification | kg SO2 eq | 0.76 | 1.15 | 0.76 | 0.50 | 0.92 | 0.56 | 1.47 | 0.72 |
Freshwater eutrophication | kg P eq | 0.034 | 0.060 | 0.034 | 0.017 | 0.044 | 0.021 | 0.078 | 0.032 |
Marine eutrophication | kg N eq | 0.39 | 0.58 | 0.40 | 0.27 | 0.47 | 0.29 | 0.74 | 0.37 |
Terrestrial ecotoxicity | kg 1,4-DB eq | 0.011 | 0.015 | 0.011 | 0.008 | 0.012 | 0.008 | 0.019 | 0.010 |
Freshwater ecotoxicity | kg 1,4-DB eq | 0.25 | 0.39 | 0.25 | 0.16 | 0.30 | 0.18 | 0.50 | 0.24 |
Marine ecotoxicity | kg 1,4-DB eq | 0.28 | 0.43 | 0.28 | 0.18 | 0.34 | 0.20 | 0.55 | 0.26 |
Agricultural land occupation | m2a | 1.09 | 1.49 | 1.10 | 0.81 | 1.25 | 0.87 | 1.86 | 1.05 |
Urban land occupation | m2a | 0.59 | 0.76 | 0.60 | 0.47 | 0.66 | 0.50 | 0.94 | 0.58 |
Willow Variety | Sum of Cost (€ha−1 year−1) | ||
---|---|---|---|
Internal | External | Total | |
Start | 669 | 205 | 873 |
Tur | 439 | 160 | 599 |
Turbo | 669 | 208 | 877 |
Żubr | 1221 | 306 | 1527 |
UWM 035 | 540 | 181 | 721 |
Ekotur | 1019 | 270 | 1289 |
UWM 155 | 375 | 155 | 530 |
Average | 706 | 212 | 918 |
Willow Variety | Cost (€ Mg−1 d.m.) | ||
---|---|---|---|
Internal | External | Total | |
Start | 65.8 | 30.3 | 96.1 |
Tur | 79.9 | 43.4 | 123.3 |
Turbo | 65.8 | 30.7 | 96.5 |
Żubr | 57.2 | 21.5 | 78.7 |
UWM 035 | 71.5 | 35.8 | 107.3 |
Ekotur | 59.0 | 23.5 | 82.5 |
UWM 155 | 89.3 | 55.5 | 144.8 |
Average | 64.7 | 29.2 | 94.0 |
Willow Variety | Cost (€GJ−1) | ||
---|---|---|---|
Internal | External | Total | |
Start | 3.91 | 1.78 | 5.69 |
Tur | 4.31 | 2.50 | 6.81 |
Turbo | 4.11 | 1.83 | 5.94 |
Żubr | 3.41 | 1.26 | 4.67 |
UWM 035 | 4.11 | 2.09 | 6.19 |
Ekotur | 3.51 | 1.38 | 4.89 |
UWM 155 | 5.71 | 3.35 | 9.06 |
Average | 3.81 | 1.72 | 5.53 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olba-Zięty, E.; Stolarski, M.J.; Krzyżaniak, M.; Warmiński, K. Willow Cultivation as Feedstock for Bioenergy-External Production Cost. Energies 2020, 13, 4799. https://doi.org/10.3390/en13184799
Olba-Zięty E, Stolarski MJ, Krzyżaniak M, Warmiński K. Willow Cultivation as Feedstock for Bioenergy-External Production Cost. Energies. 2020; 13(18):4799. https://doi.org/10.3390/en13184799
Chicago/Turabian StyleOlba-Zięty, Ewelina, Mariusz Jerzy Stolarski, Michał Krzyżaniak, and Kazimierz Warmiński. 2020. "Willow Cultivation as Feedstock for Bioenergy-External Production Cost" Energies 13, no. 18: 4799. https://doi.org/10.3390/en13184799
APA StyleOlba-Zięty, E., Stolarski, M. J., Krzyżaniak, M., & Warmiński, K. (2020). Willow Cultivation as Feedstock for Bioenergy-External Production Cost. Energies, 13(18), 4799. https://doi.org/10.3390/en13184799