Microwave Heating Improvement: Permittivity Characterization of Water–Ethanol and Water–NaCl Binary Mixtures †
Abstract
:1. Introduction
Elements of Dielectric Theory
2. Materials and Methods
2.1. Measurement Method
2.2. Design of the Parallel Plate Cell
2.3. Experimental
2.4. Data Modeling
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jones, D.A.; Lelyveld, T.P.; Mavrofidis, S.D.; Kingman, S.W.; Miles, N.J. Microwave heating applications in environmental engineering—A review. Resour. Conserv. Recycl. 2002, 34, 75–90. [Google Scholar] [CrossRef]
- Council, N.R. Microwave Processing of Materials; The National Academies Press: Washington, DC, USA, 1994; ISBN 978-0-309-05027-2. [Google Scholar]
- Feng, H.; Yin, Y.; Tang, J. Microwave Drying of Food and Agricultural Materials: Basics and Heat and Mass Transfer Modeling. Food Eng. Rev. 2012, 4, 89–106. [Google Scholar] [CrossRef]
- Horikoshi, S.; Schiffmann, R.F.; Fukushima, J.; Serpone, N. Microwave Heating. In Microwave Chemical and Materials Processing; Springer: Singapore, 2018; pp. 47–85. [Google Scholar]
- Kumar, C.; Karim, M.A. Microwave-convective drying of food materials: A critical review. Crit. Rev. Food Sci. Nutr. 2019, 59, 379–394. [Google Scholar] [CrossRef] [Green Version]
- Kumar, C. Modelling Intermittent Microwave Convective Drying (IMCD) of Food Materials. Ph.D. Thesis, Queensland University of Technology, Brisbane, Australia, 2015. [Google Scholar]
- Zhang, M.; Jiang, H.; Lim, R.X. Recent developments in microwave-assisted drying of vegetables, fruits, and aquatic products-drying kinetics and quality considerations. Dry. Technol. 2010, 28, 1307–1316. [Google Scholar] [CrossRef]
- Metaxas, A.C.; Meredith, R.J. Book Review: Industrial Microwave Heating. J. Microw. Power Electromagn. Energy 1989, 24, 108. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, B.; Liu, P.; Peng, J.; Zhang, L. Dielectric Characterization and Microwave Roasting of Molybdenite Concentrates at 915 MHz Frequency. J. Harbin Inst. Technol. New Ser. 2019, 26, 58–67. [Google Scholar]
- Vasudev, H.; Singh, G.; Bansal, A.; Vardhan, S.; Thakur, L. Microwave heating and its applications in surface engineering: A review. Mater. Res. Express 2019, 6, 102001. [Google Scholar] [CrossRef]
- Motasemi, F.; Salema, A.A.; Afzal, M.T. Dielectric characterization of corn stover for microwave processing technology. Fuel Process. Technol. 2015, 131, 370–375. [Google Scholar] [CrossRef]
- De La Hoz, A.; Díaz-Ortiz, Á.; Moreno, A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev. 2005, 34, 164–178. [Google Scholar] [CrossRef]
- Jahirul, M.I.; Rasul, M.G.; Chowdhury, A.A.; Ashwath, N. Biofuels production through biomass pyrolysis—A technological review. Energies 2012, 5, 4952–5001. [Google Scholar] [CrossRef]
- Chen, H.; Li, T.; Wang, Z.; Ye, R.; Li, Q. Effect of dielectric properties on heat transfer characteristics of rubber materials via microwave heating. Int. J. Therm. Sci. 2020, 148, 106162. [Google Scholar] [CrossRef]
- Kappe, C.O. How to measure reaction temperature in microwave-heated transformations. Chem. Soc. Rev. 2013, 42, 4977–4990. [Google Scholar] [CrossRef] [PubMed]
- Fanti, A.; Casu, S.; Desogus, F.; Djuric, N.; Mazzarella, G. Design and optimization of a microwave irradiated and resonant continuous biochemical reactor. Radio Sci. 2016, 51, 1199–1212. [Google Scholar] [CrossRef] [Green Version]
- Casu, S.; Fanti, A.; Djuric, N.; Desogus, F.; Mazzarella, G. Microwave resonant cavity as a reactor for the enzymatic hydrolysis of sucrose. In Proceedings of the 2015 IEEE 15th Mediterranean Microwave Symposium (MMS), Lecce, Italy, 30 November–2 December 2015. [Google Scholar]
- Fanari, F.; Dachena, C.; Carta, R.; Desogus, F. Heat transfer modeling in soil microwave heating. Chem. Eng. Trans. 2019, 76, 709–714. [Google Scholar]
- Desogus, F.; Fanti, A.; Casu, S.; Spanu, M.; Bruno Lodi, M.; Mazzarella, G.; Bisceglia, B. Use of microwaves for disinfection of farmland: A feasibility study. Chem. Eng. Trans. 2016, 52, 1195–1200. [Google Scholar]
- Paz-García, E.J.; Paredes-Carrera, S.P.; Flores-Valle, S.O.; Rodríguez-Clavel, I.S.; Sánchez-Ochoa, J.C.; Pérez-Gutiérrez, R.M. Synthesis of CuO for microwave-assisted pyrolysis of biomass. Appl. Sci. 2019, 9, 5525. [Google Scholar] [CrossRef] [Green Version]
- Mattli, M.; Matli, P.; Shakoor, A.; Amer Mohamed, A. Structural and Mechanical Properties of Amorphous Si3N4 Nanoparticles Reinforced Al Matrix Composites Prepared by Microwave Sintering. Ceramics 2019, 2, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Zlotorzynski, A. The Application of Microwave Radiation to Analytical and Environmental Chemistry. Crit. Rev. Anal. Chem. 1995, 25, 43–76. [Google Scholar] [CrossRef]
- Birla, S.L.; Wang, S.; Tang, J.; Tiwari, G. Characterization of radio frequency heating of fresh fruits influenced by dielectric properties. J. Food Eng. 2008, 89, 390–398. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Marra, F.; Subbiah, J.; Wang, S. Computer simulation for improving radio frequency (RF) heating uniformity of food products: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1033–1057. [Google Scholar] [CrossRef]
- Zhang, H.; Datta, A.K. Electromagnetics of Microwave Heating: Magnitude and Uniformity of Energy Absorption in an Oven. In Handbook of Microwave Technology for Food Applications; CRC Press: Cleveland, OH, USA, 2001; pp. 33–68. [Google Scholar]
- Marra, F.; Zhang, L.; Lyng, J.G. Radio frequency treatment of foods: Review of recent advances. J. Food Eng. 2009, 91, 497–508. [Google Scholar] [CrossRef]
- Datta, A.K. Handbook of Microwave Technology for Food Application; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Desogus, F.; Pili, F.; Carta, R. Experimental study on the axial mass transport of minced biomass (rape straw) into a pyrolysis rotating reactor working in the slipping regime. Chem. Eng. Sci. 2016, 145, 80–89. [Google Scholar] [CrossRef]
- Fanari, F.; Muntoni, G.; Dachena, C. Permittivity Measurements of Simulated Biological Tissues for Hyperthermia Applications. In Proceedings of the 2018 26th Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018. [Google Scholar]
- Fanti, A.; Spanu, M.; Lodi, M.B.; Desogus, F.; Mazzarella, G. Nonlinear Analysis of Soil Microwave Heating: Application to Agricultural Soils Disinfection. IEEE J. Multiscale Multiphysics Comput. Tech. 2017, 2, 105–114. [Google Scholar] [CrossRef]
- Lvovich, V.F. Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena; Wiley: Hoboken, NJ, USA, 2012; ISBN 9780470627785. [Google Scholar]
- Yin, P.; Zhang, L.; Wang, J.; Feng, X.; Zhao, L.; Rao, H.; Wang, Y.; Dai, J. Preparation of SiO2-MnFe2O4 composites via one-pot hydrothermal synthesis method and microwave absorption investigation in S-band. Molecules 2019, 24, 2605. [Google Scholar] [CrossRef] [Green Version]
- Nollet, L.M.L.; Toldrá, F. Advances in Food Diagnostics; John Wiley & Sons: Hoboken, NJ, USA, 2007; ISBN 0813822211. [Google Scholar]
- Schönhals, A.; Kremer, F. Theory of Dielectric Relaxation. In Broadband Dielectric Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2003; pp. 1–33. [Google Scholar]
- Wei, W.; Shao, Z.; Zhang, Y.; Qiao, R.; Gao, J. Fundamentals and applications of microwave energy in rock and concrete processing—A review. Appl. Therm. Eng. 2019, 157, 113751. [Google Scholar] [CrossRef]
- Bobicki, E.R.; Pickles, C.A.; Forster, J.; Marzoughi, O.; Hutcheon, R. High temperature permittivity measurements of selected industrially relevant ores: Review and analysis. Miner. Eng. 2020, 145, 106055. [Google Scholar] [CrossRef]
- Koops, C.G. On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 1951, 83, 121–124. [Google Scholar] [CrossRef]
- Cheng, C.; Fan, R.; Fan, G.; Liu, H.; Zhang, J.; Shen, J.; Ma, Q.; Wei, R.; Guo, Z. Tunable negative permittivity and magnetic performance of yttrium iron garnet/polypyrrole metacomposites at the RF frequency. J. Mater. Chem. C 2019, 7, 3160–3167. [Google Scholar] [CrossRef]
- Ryynänen, S. The electromagnetic properties of food materials: A review of the basic principles. J. Food Eng. 1995, 26, 409–429. [Google Scholar] [CrossRef]
- Casu, S.; Fanti, A.; Lodi, M.B.; Spanu, M.; Desogus, F.; Mazzarella, G. Numerical Estimation of Agricultural Raised Bed Microwave Disinfection. Radio Sci. 2018, 53, 1176–1186. [Google Scholar] [CrossRef]
- Von Hippel, A.R. Dielectric Materials and Applications; Artech House: Norwood, MA, USA, 1995; ISBN 1580531237. [Google Scholar]
- Debye, P. Polar Molecules; The Chemical Catalog Company Inc.: New York, NY, USA, 1929. [Google Scholar]
- Komarov, V.; Wang, S.; Tang, J. Permittivity and Measurements. In Encyclopedia of RF and Microwave Engineering; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Wang, Y.; Afsar, M.N. Measurement of complex permittivity of liquids using waveguide techniques—Abstract. J. Electromagn. Waves Appl. 2003, 17, 1311–1312. [Google Scholar] [CrossRef]
- Angela, A.; d′Amore, M. Relevance of Dielectric Properties in Microwave Assisted Processes. In Microwave Materials Characterization; InTech: London, UK, 2012. [Google Scholar]
- Bao, J.-Z.; Davis, C.C.; Swicord, M.L. Microwave Dielectric Measurements of Erythrocyte Suspensions. Biophys. J. 1994, 66, 2173–2180. [Google Scholar] [CrossRef]
- Fanari, F.; Muntoni, G.; Dachena, C.; Carta, R.; Desogus, F. Permittivity measurements of mixtures as a function of their composition for microwave heating improving. Chem. Eng. Trans. 2019, 76, 871–876. [Google Scholar]
- Acree, W.E., Jr. Mathematical representation of thermodynamic properties: Part 2. Derivation of the combined nearly ideal binary solvent (NIBS)/Redlich-Kister mathematical representation from a two-body and three-body interactional mixing model. Thermochim. Acta 1992, 198, 71–79. [Google Scholar] [CrossRef]
- King, M.B.; Queen, N.M. Use of Rational Functions for Representing Data. J. Chem. Eng. Data 1979, 24, 178–181. [Google Scholar] [CrossRef]
- Khattab, I.S.; Bandarkar, F.; Khoubnasabjafari, M.; Jouyban, A. Density, viscosity, surface tension, and molar volume of propylene glycol + water mixtures from 293 to 323 K and correlations by the Jouyban–Acree model. Arab. J. Chem. 2017, 10, S71–S75. [Google Scholar] [CrossRef] [Green Version]
- Fathi Azarbayjani, A.; Aliasgharlou, N.; Khoshbakht, S.; Ghanbarpour, P.; Rahimpour, E.; Barzegar-Jalali, M.; Jouyban, A. Experimental Solubility and Density Functional Theory Studies of Deferasirox in Binary Solvent Mixtures: Performance of Polarizable Continuum Model and Jouyban-Acree Model. J. Chem. Eng. Data 2019, 64, 2273–2279. [Google Scholar] [CrossRef]
- Jouyban, A.; Soltanpour, S.; Chan, H.K. A simple relationship between dielectric constant of mixed solvents with solvent composition and temperature. Int. J. Pharm. 2004, 269, 353–360. [Google Scholar] [CrossRef]
- Jouyban, A. Further computations on physico-chemical properties of binary solvent mixtures of N,N-dimethylformamide with N-propylpropan-1-amine, N-butylbutan-1-amine, butan-1-amine and hexan-1-amine at several temperatures. J. Mol. Liq. 2017, 242, 928–930. [Google Scholar] [CrossRef]
- Franchini, G.C.; Marchetti, A.; Tagliazucchi, M.; Tassi, L.; Tosi, G. Ethane-1,2-diol-2-methoxyethanol solvent system. Dependence of the relative permittivity and refractive index on the temperature and composition of the binary mixture. J. Chem. Soc. Faraday Trans. 1991, 87, 2583–2588. [Google Scholar] [CrossRef]
- Dortmund Data Bank—DDBST GmbH. Available online: http://www.ddbst.com/ddb.html (accessed on 21 April 2020).
Mixture | SSE | RMSE | ||||||
---|---|---|---|---|---|---|---|---|
W-Eth | 4.350 | 3.105 | 0.362 | 1.145 | −1.197 | 0.087 | 0.093 | 0.948 |
W-Eth | 0.215 | 1.726 | −0.570 | 1.729 | −2.953 | 0.114 | 0.105 | 0.846 |
W-S | 4.350 | 3.387 × 108 | −5.938 × 108 | −3.4082 × 108 | −8.573 × 107 | 6.673 × 10−6 | 0.008 | 0.828 |
W-S | 195.548 | 3.414 | 5.136 × 106 | 1.037 × 107 | 5.239 × 106 | 1.142 | 0.356 | 0.436 |
Mixture | SSE | RMSE | |||||
---|---|---|---|---|---|---|---|
W-Eth | 15.074 | −13.105 | 0.189 | −0.009 | 265.208 | 5.429 | 0.915 |
W-Eth | 1.019 | 1.890 | 0.835 | 0.101 | 0.412 | 0.214 | 0.841 |
W-S | 1.688 | −1.683 | 0.022 | −0.022 | 0.404 | 0.201 | 0.821 |
W-S | 6.694 | −6.695 | 0.101 | −0.101 | 186.6 | 5.163 | 0.906 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanari, F.; Muntoni, G.; Dachena, C.; Carta, R.; Desogus, F. Microwave Heating Improvement: Permittivity Characterization of Water–Ethanol and Water–NaCl Binary Mixtures. Energies 2020, 13, 4861. https://doi.org/10.3390/en13184861
Fanari F, Muntoni G, Dachena C, Carta R, Desogus F. Microwave Heating Improvement: Permittivity Characterization of Water–Ethanol and Water–NaCl Binary Mixtures. Energies. 2020; 13(18):4861. https://doi.org/10.3390/en13184861
Chicago/Turabian StyleFanari, Fabio, Giacomo Muntoni, Chiara Dachena, Renzo Carta, and Francesco Desogus. 2020. "Microwave Heating Improvement: Permittivity Characterization of Water–Ethanol and Water–NaCl Binary Mixtures" Energies 13, no. 18: 4861. https://doi.org/10.3390/en13184861
APA StyleFanari, F., Muntoni, G., Dachena, C., Carta, R., & Desogus, F. (2020). Microwave Heating Improvement: Permittivity Characterization of Water–Ethanol and Water–NaCl Binary Mixtures. Energies, 13(18), 4861. https://doi.org/10.3390/en13184861