Proppant Transportation in Cross Fractures: Some Findings and Suggestions for Field Engineering
Abstract
:1. Introduction
2. Methods
2.1. CFD Simulation
2.1.1. Model Descriptions
2.1.2. Geometry and Mesh
2.1.3. Initial and Boundary Conditions
2.1.4. Solution Algorithm
2.2. Dimensional Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Cases | Proppant | Water | Fractures | Dimensionless Parameters | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ds/mm | wb/mm | wa/mm | l/m | /° | ||||||||||||
1 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 1 | 100 | 2820 | 45 | 10 | 3 | 800 | 0.035 |
2 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 2 | 100 | 2820 | 45 | 10 | 3 | 800 | 0.035 |
3 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 3 | 100 | 2820 | 45 | 10 | 3 | 800 | 0.035 |
4 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 4 | 100 | 2820 | 45 | 10 | 3 | 800 | 0.035 |
5 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 5 | 100 | 2820 | 45 | 10 | 3 | 800 | 0.035 |
6 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 7 | 100 | 2820 | 45 | 10 | 3 | 800 | 0.035 |
7 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 9 | 100 | 2820 | 45 | 10 | 3 | 800 | 0.035 |
8 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 11 | 100 | 2820 | 45 | 10 | 3 | 800 | 0.035 |
9 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.1 | 3 | 50 | 2820 | 45 | 10 | 3 | 800 | 0.018 |
10 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.3 | 3 | 150 | 2820 | 45 | 10 | 3 | 800 | 0.053 |
11 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.4 | 3 | 200 | 2820 | 45 | 10 | 3 | 800 | 0.071 |
12 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.5 | 3 | 250 | 2820 | 45 | 10 | 3 | 800 | 0.088 |
13 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.6 | 3 | 300 | 2820 | 45 | 10 | 3 | 800 | 0.106 |
14 | 2700 | 0.5 | 818 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 3 | 100 | 1888 | 45 | 10 | 3 | 800 | 0.053 |
15 | 2900 | 0.5 | 879 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 3 | 100 | 2178 | 45 | 10 | 3 | 800 | 0.046 |
16 | 3100 | 0.5 | 939 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 3 | 100 | 2488 | 45 | 10 | 3 | 800 | 0.040 |
17 | 3500 | 0.5 | 1060 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 3 | 100 | 3171 | 45 | 10 | 3 | 800 | 0.031 |
18 | 3700 | 0.5 | 1121 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 3 | 100 | 3545 | 45 | 10 | 3 | 800 | 0.028 |
19 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 3 | 100 | 2820 | 15 | 10 | 3 | 800 | 0.035 |
20 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 3 | 100 | 2820 | 30 | 10 | 3 | 800 | 0.035 |
21 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 3 | 100 | 2820 | 60 | 10 | 3 | 800 | 0.035 |
22 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 3 | 100 | 2820 | 75 | 10 | 3 | 800 | 0.035 |
23 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 3 | 100 | 2820 | 90 | 10 | 3 | 800 | 0.035 |
24 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 3 | 100 | 2820 | 105 | 10 | 3 | 800 | 0.035 |
25 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 3.0 | 0.4 | 0.2 | 3 | 100 | 2820 | 45 | 6 | 3 | 800 | 0.035 |
26 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 3.5 | 0.4 | 0.2 | 3 | 100 | 2820 | 45 | 7 | 3 | 800 | 0.035 |
27 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 4.0 | 0.4 | 0.2 | 3 | 100 | 2820 | 45 | 8 | 3 | 800 | 0.035 |
28 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 4.5 | 0.4 | 0.2 | 3 | 100 | 2820 | 45 | 9 | 3 | 800 | 0.035 |
29 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.5 | 0.4 | 0.2 | 3 | 100 | 2820 | 45 | 11 | 3 | 800 | 0.035 |
30 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.2 | 5.0 | 0.4 | 0.2 | 3 | 100 | 2820 | 45 | 10 | 2.4 | 800 | 0.035 |
31 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.8 | 5.0 | 0.4 | 0.2 | 3 | 100 | 2820 | 45 | 10 | 3.6 | 800 | 0.035 |
32 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 2.2 | 5.0 | 0.4 | 0.2 | 3 | 100 | 2820 | 45 | 10 | 4.4 | 800 | 0.035 |
33 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 2.5 | 5.0 | 0.4 | 0.2 | 3 | 100 | 2820 | 45 | 10 | 5 | 800 | 0.035 |
34 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.1 | 0.2 | 3 | 100 | 2820 | 45 | 10 | 3 | 200 | 0.035 |
35 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.2 | 0.2 | 3 | 100 | 2820 | 45 | 10 | 3 | 400 | 0.035 |
36 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.3 | 0.2 | 3 | 100 | 2820 | 45 | 10 | 3 | 600 | 0.035 |
37 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.5 | 0.2 | 3 | 100 | 2820 | 45 | 10 | 3 | 1000 | 0.035 |
38 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.6 | 0.2 | 3 | 100 | 2820 | 45 | 10 | 3 | 1200 | 0.035 |
39 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.8 | 0.2 | 3 | 100 | 2820 | 45 | 10 | 3 | 1600 | 0.035 |
40 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.4 | 1 | 200 | 2820 | 45 | 10 | 3 | 800 | 0.071 |
41 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.6 | 1 | 300 | 2820 | 45 | 10 | 3 | 800 | 0.106 |
42 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.4 | 5 | 200 | 2820 | 45 | 10 | 3 | 800 | 0.071 |
43 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.6 | 5 | 300 | 2820 | 45 | 10 | 3 | 800 | 0.106 |
44 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.4 | 7 | 200 | 2820 | 45 | 10 | 3 | 800 | 0.071 |
45 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.6 | 7 | 300 | 2820 | 45 | 10 | 3 | 800 | 0.106 |
46 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.4 | 9 | 200 | 2820 | 45 | 10 | 3 | 800 | 0.071 |
47 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.6 | 9 | 300 | 2820 | 45 | 10 | 3 | 800 | 0.106 |
48 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 5 | 100 | 2820 | 15 | 10 | 3 | 800 | 0.035 |
49 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 5 | 100 | 2820 | 45 | 10 | 3 | 800 | 0.035 |
50 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 5 | 100 | 2820 | 75 | 10 | 3 | 800 | 0.035 |
51 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 7 | 100 | 2820 | 15 | 10 | 3 | 800 | 0.035 |
52 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 7 | 100 | 2820 | 45 | 10 | 3 | 800 | 0.035 |
53 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 7 | 100 | 2820 | 75 | 10 | 3 | 800 | 0.035 |
54 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 9 | 100 | 2820 | 15 | 10 | 3 | 800 | 0.035 |
55 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 9 | 100 | 2820 | 45 | 10 | 3 | 800 | 0.035 |
56 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 5.0 | 0.4 | 0.2 | 9 | 100 | 2820 | 75 | 10 | 3 | 800 | 0.035 |
57 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 3.0 | 0.4 | 0.2 | 5 | 100 | 2820 | 45 | 6 | 3 | 800 | 0.035 |
58 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 4.0 | 0.4 | 0.2 | 5 | 100 | 2820 | 45 | 8 | 3 | 800 | 0.035 |
59 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 3.0 | 0.4 | 0.2 | 7 | 100 | 2820 | 45 | 6 | 3 | 800 | 0.035 |
60 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 4.0 | 0.4 | 0.2 | 7 | 100 | 2820 | 45 | 8 | 3 | 800 | 0.035 |
61 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 3.0 | 0.4 | 0.2 | 9 | 100 | 2820 | 45 | 6 | 3 | 800 | 0.035 |
62 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 1.5 | 4.5 | 0.4 | 0.2 | 9 | 100 | 2820 | 45 | 9 | 3 | 800 | 0.035 |
63 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 2.2 | 5.0 | 0.4 | 0.2 | 1 | 100 | 2820 | 45 | 10 | 4.4 | 800 | 0.035 |
64 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 2.2 | 5.0 | 0.4 | 0.2 | 5 | 100 | 2820 | 45 | 10 | 4.4 | 800 | 0.035 |
65 | 3300 | 0.5 | 1000 | 1.0 × 10−3 | 2.2 | 5.0 | 0.4 | 0.2 | 7 | 100 | 2820 | 45 | 10 | 4.4 | 800 | 0.035 |
References
- Tong, S.; Singh, R.; Mohanty, K.K. A Visualization Study of Proppant Transport in Foam Fracturing Fluids. J. Nat. Gas Sci. Eng. 2018, 52, 235–247. [Google Scholar] [CrossRef]
- Osiptsov, A.A. Fluid Mechanics of Hydraulic Fracturing: A Review. J. Pet. Sci. Eng. 2017, 156, 513–535. [Google Scholar] [CrossRef]
- Barati, R.; Liang, J.T. A Review of Fracturing Fluid Systems Used for Hydraulic Fracturing of Oil and Gas Wells. J. Appl. Polym. Sci. 2014, 131, 40735. [Google Scholar] [CrossRef]
- Wang, J.; Elsworth, D. Role of Proppant Distribution on the Evolution of Hydraulic Fracture Conductivity. J. Pet. Sci. Eng. 2018, 166, 249–262. [Google Scholar] [CrossRef]
- Alotaibi, M.; Miskimins, J. Slickwater Proppant Transport in Complex Fractures: New Experimental Findings & Scalable Correlation. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 28–30 September 2015. [Google Scholar] [CrossRef]
- Sahai, R.; Miskimins, J.; Olson, K.E. Laboratory Results of Proppant Transport in Complex Fracture Systems. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, USA, 4–6 February 2014. [Google Scholar] [CrossRef]
- McClure, M. Bed Load Proppant Transport During Slickwater Hydraulic Fracturing: Insights from Comparisons between Published Laboratory Data and Correlations for Sediment and Pipeline Slurry Transport. J. Pet. Sci. Eng. 2018, 161, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.D.; Wu, K.; Li, G.S.; Tang, J.Z.; Shen, Z.H. Effect of Proppant Addition Schedule on the Proppant Distribution in a Straight Fracture for Slickwater Treatment. J. Pet. Sci. Eng. 2018, 167, 110–119. [Google Scholar] [CrossRef]
- Roostaei, M.; Nouri, A.; Fattahpour, V.; Chan, D. Coupled Hydraulic Fracture and Proppant Transport Simulation. Energies 2020, 13, 2822. [Google Scholar] [CrossRef]
- Li, P.; Zhang, X.H.; Lu, X.B. Numerical Simulation on Solid-Liquid Two-Phase Flow in Cross Fractures. Chem. Eng. Sci. 2018, 181, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.; Mohanty, K.K. Proppant Transport Study in Fractures with Intersections. Fuel 2016, 181, 463–477. [Google Scholar] [CrossRef]
- Zhong, W.Q.; Yu, A.B.; Zhou, G.W.; Xie, J.; Zhang, H. CFD Simulation of Dense Particulate Reaction System: Approaches, Recent Advances and Applications. Chem. Eng. Sci. 2016, 140, 16–43. [Google Scholar] [CrossRef]
- Li, P.; Su, J.Z.; Zhang, Y.; Zhang, X.H.; Lu, X.B. The Two Phase Flow of Proppant-Laden Fluid in a Single Fracture. Mech. Eng. 2017, 39, 135–144. (In Chinese) [Google Scholar]
- Patankar, N.A.; Joseph, D.D.; Wang, J.; Barree, R.D.; Conway, M.; Asadi, M. Power Law Correlations for Sediment Transport in Pressure Driven Channel Flows. Int. J. Multiph. Flow 2002, 28, 1269–1292. [Google Scholar] [CrossRef] [Green Version]
- Dogon, D.; Golombok, M. Self-Regulating Solutions for Proppant Transport. Chem. Eng. Sci. 2016, 148, 219–228. [Google Scholar] [CrossRef]
- Liu, Y.; Sharma, M.M. Effect of Fracture Width and Fluid Rheology on Proppant Settling and Retardation: An Experimental Study. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 9–12 October 2005. [Google Scholar] [CrossRef]
- Tan, Q.M. Dimensional Analysis: With Case Studies in Mechanics, 1st ed.; Springer: Berlin Heidelberg, Germany, 2011; pp. 7–16. [Google Scholar]
- King, G.E. Thirty Years of Gas Shale Fracturing: What Have We Learned? In Proceedings of the SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Florence, Italy, 19–22 September 2010. [Google Scholar] [CrossRef]
- Mack, M.; Sun, J.; Khadilkar, C. Quantifying Proppant Transport in Thin Fluids: Theory and Experiments. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, Society of Petroleum Engineers, The Woodlands, TX, USA, 4–6 February 2014. [Google Scholar] [CrossRef]
- Huang, X.; Yuan, P.; Zhang, H.; Han, J.H.; Alberto, M.; Bao, J. Numerical Study of Wall Roughness Effect on Proppant Transport in Complex Fracture Geometry. In Proceedings of the SPE Middle East Oil & Gas Show and Conference, Manama, Kingdom of Bahrain, 6–9 March 2017. [Google Scholar] [CrossRef]
- Li, N.; Li, J.; Zhao, L.Q.; Luo, Z.F.; Liu, P.L.; Guo, Y.J. Laboratory Testing on Proppant Transport in Complex-Fracture Systems. SPE Prod. Oper 2016, 32, 4. [Google Scholar] [CrossRef]
- Zhang, H.R.; Liang, H.R.; Yan, X.H.; Wang, B.H.; Wang, N. Simulation on Water and Sand Separation from Crude Oil in Settling Tanks Based on the Particle Model. J. Pet. Sci. Eng. 2017, 156, 366–372. [Google Scholar] [CrossRef]
Parameters | Units | Value |
---|---|---|
Proppant diameter | mm | 0.5 |
Water density | kg/m3 | 1000 |
Water viscosity | Pa·s | 0.001 |
Primary fracture: length × height | mm | 1000 × 150 |
Secondary fracture: length × height | mm | 600 × 150 |
Size of grid: length × height × width | mm | 2 × 2 × 0.5 |
Ar | 1888 | 2178 | 2488 | 2820 | 3171 | 3545 |
Time/s | 50 | 46 | 43 | 40 | 38 | 36 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Lu, X.; Zhang, X.; Li, P. Proppant Transportation in Cross Fractures: Some Findings and Suggestions for Field Engineering. Energies 2020, 13, 4912. https://doi.org/10.3390/en13184912
Zhang Y, Lu X, Zhang X, Li P. Proppant Transportation in Cross Fractures: Some Findings and Suggestions for Field Engineering. Energies. 2020; 13(18):4912. https://doi.org/10.3390/en13184912
Chicago/Turabian StyleZhang, Yan, Xiaobing Lu, Xuhui Zhang, and Peng Li. 2020. "Proppant Transportation in Cross Fractures: Some Findings and Suggestions for Field Engineering" Energies 13, no. 18: 4912. https://doi.org/10.3390/en13184912
APA StyleZhang, Y., Lu, X., Zhang, X., & Li, P. (2020). Proppant Transportation in Cross Fractures: Some Findings and Suggestions for Field Engineering. Energies, 13(18), 4912. https://doi.org/10.3390/en13184912