Interior Permanent Magnet Synchronous Motor Design for Eddy Current Loss Reduction in Permanent Magnets to Prevent Irreversible Demagnetization †
Abstract
:1. Introduction
2. Theoretical Approach for Indirect Evaluation of Eddy Current Loss
2.1. 2-D Magneto-Statics Finite Element Analysis
2.2. Indirect Estimation Method of Eddy Current Loss of PMs
2.3. Verification of Relationship between Flux Variation and Eddy Current Loss in PMs
3. Optimization of Rotor Shape
3.1. Design Model
3.2. Conditions of Optimization
THD of Back-EMF: 1.5–2.0 (%) (Concentrate condition 2)
Current angle: 90 (deg.)
3.3. Full Factorial Design
3.4. Response Surface Methodology
4. Calculation of the Temperature inside PM
4.1. Eddy Current Loss in PM
4.2. Other Losses
4.3. Analysis Results of the Thermal Equivalent Circuit
4.4. Analysis of Demagnetization
- Input of the core and magnet’s B-H curve in 2-D FEA.
- Perform the nonlinear analysis considering material properties.
- No-load analysis 1 → linkage flux calculation (Φnoload1).
- Load analysis with static field analysis → input maximum current with d-axis only.
- No-load analysis 2 → renew residual flux density (Br) at each element (Φnoload2).
- Calculation of demagnetization ratio (ηdemag.) by comparing linkage flux between the result of the no-load analysis 1 and no-load analysis 2 as Equation (9).
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, P.; Lin, D.; Xiao, Y.; Lambert, N.; Rahman, M.A. Temperature–dependent demagnetization model of permanent magnets for finite element analysis. IEEE Trans. Magn. 2012, 48, 1031–1034. [Google Scholar] [CrossRef]
- Jung, J.W.; Lee, B.H.; Kim, K.S.; Hong, J.P. Design of IPMSM for reduction of eddy current loss in permanent magnets to prevent irreversible demagnetization. In Proceedings of the IEEE International Electric Machines and Drives (IEMDC), Miami, FL, USA, 21–24 May 2017. [Google Scholar]
- Kang, G.H.; Hur, J.; Nam, H.; Hong, J.P.; Kim, G.T. Analysis of irreversible magnet demagnetization in line-start motors based of the finite element method. IEEE Trans. Magn. 2003, 39, 1488–1491. [Google Scholar] [CrossRef]
- Kim, K.C.; Lim, S.B.; Koo, D.H.; Lee, J. The shape design of permanent magnet for permanent magnet synchronous motor considering partial demagnetization. IEEE Trans. Magn. 2006, 42, 3485–4487. [Google Scholar] [CrossRef]
- Barcaro, M.; Bianchi, N.; Magnussen, F. Permanent-magnet optimization in permanent-magnet-assisted synchronous reluctance motor for a wide constant-power speed range. IEEE Trans. Ind. Electron. 2012, 59, 2495–2502. [Google Scholar] [CrossRef]
- Muminul Islam Chy, M.; Uddin, M.N. Development and implementation of a new adaptive intelligent speed controller for IPMSM drive. IEEE Trans. Ind. Appl. 2009, 45, 1106–1115. [Google Scholar]
- Nasir Uddin, M.; Azizur Rahman, M. High-speed control of IPMSM drives using improved fuzzy logic algorithms. IEEE Trans. Ind. Electron. 2007, 54, 190–199. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, R.; Yin, W.; Yan, C.; Tang, X.; Jin, C.; Lee, D.; Yan, A. Enhanced electric resistivity of die-upset magnets by segmented NdF3 addition. IEEE Trans. Magn. 2014, 50, 2104103. [Google Scholar] [CrossRef]
- Koo, M.M.; Choi, J.Y.; Hong, K.Y.; Lee, K.S. Comparative analysis of eddy-current loss in permanent magnet synchronous machine considering PM shape and skew effect using 3-D FEA. IEEE Trans. Magn. 2015, 51, 6301104. [Google Scholar] [CrossRef]
- Nair, S.S.; Wang, J.; Chin, R.; Chen, L.; Sun, T. Analytical prediction of 3-d magnet eddy current losses in surface mounted pm machines accounting slotting effect. IEEE Trans. Energy Convers. 2017, 32, 414–423. [Google Scholar] [CrossRef]
- Benlamine, R.; Dubas, F.; Randi, S.A.; Lhotellier, D.; Espanet, C. 3-D numerical hybrid method for PM eddy-current losses calculation: Application to axial-flux PMSMs. IEEE Trans. Magn. 2015, 51, 8106110. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Wang, J.; Nair, S.S. An analytical method for predicting 3-d eddy current loss in permanent magnet machines based on generalized image theory. IEEE Trans. Magn. 2016, 52, 8103311. [Google Scholar] [CrossRef]
- Cheng, M.; Zhu, S. Calculation of PM eddy current loss in IPM machine under pwm vsi supply with combined 2-d fe and analytical method. IEEE Trans. Magn. 2017, 53, 6300112. [Google Scholar] [CrossRef]
- Mirzaei, M.; Binder, A.; Funieru, B.; Susic, M. Analytical calculations of induced eddy currents losses in the magnets of surface mounted pm machines with consideration of circumferential and axial segmentation effects. IEEE Trans. Magn. 2012, 48, 4831–4841. [Google Scholar] [CrossRef]
- Okitsu, T.; Matsuhashi, D.; Gao, Y.; Muramatsu, K. Coupled 2-D and 3-D eddy current analyses for evaluating eddy current loss of a permanent magnet in surface pm motors. IEEE Trans. Magn. 2012, 48, 3100–3103. [Google Scholar] [CrossRef]
- Okitsu, T.; Matsuhashi, D.; Muramatsu, K. Method for evaluating the eddy current loss of a permanent magnet in pm motor driven by an inverter power supply using coupled 2-D and 3-D finite element analysises. IEEE Trans. Magn. 2009, 45, 4574–4577. [Google Scholar] [CrossRef]
- Ji, J.; Luo, J.; Zhao, W.; Zheng, J.; Zhang, Y. Effect of circumferential segmentation of permanent magnets on rotor loss in fractional-slot concentrated-winding machines. IET Electr. Power Appl. 2017, 11, 1151–1159. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, S.; Liu, C. Magnet eddy-current loss analysis of interior PM machines for electric vehicle application. IEEE Trans. Magn. 2017, 53, 7402904. [Google Scholar] [CrossRef]
- Oh, S.Y.; Cho, S.Y.; Han, J.H.; Lee, H.J.; Ryu, G.H.; Kang, D.W.; Lee, J. Design of IPMSM rotor shape for magnet eddy-current loss reduction. IEEE Trans. Magn. 2014, 50, 7020804. [Google Scholar] [CrossRef]
- Jara, W.; Lindh, P.; Tapia, J.A.; Petrov, I.; Repo, A.K.; Pyrhonen, J. Rotor eddy-current losses reduction in an axial flux permanent-magnet machine. IEEE Trans. Ind. Electron. 2016, 63, 4729–4737. [Google Scholar] [CrossRef]
- Lee, T.Y.; Kim, Y.J.; Jung, S.Y. Reduction of permanent magnet eddy current loss in interior permanent magnet synchronous motor according to rotor design optimization. In Proceedings of the IEEE Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, Korea, 1–5 July 2015. [Google Scholar]
- Lee, B.H.; Kim, K.S.; Jung, J.W.; Kim, Y.K. Temperature estimation of IPMSM using thermal equivalent circuit. IEEE Trans. Magn. 2012, 48, 2949–2952. [Google Scholar] [CrossRef]
- Salon, S.; Chari, M.V.K. Numerical Methods in Electromagnetism; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Kim, S.I.; Hong, J.P.; Kim, Y.K.; Nam, H.; Choi, H.I. Optimal design of slotless-type pmlsm considering multiple responses by response surface methodology. IEEE Trans. Magn. 2006, 42, 1219–1222. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments; John Wily & Sons, Inc.: Hoboken, NJ, USA, 2020. [Google Scholar]
- Myers, R.H.; Montgomery, D.C. Response Surface Methodology: Process and Product Optimization Using Designed Experiments; John Wily & Sons, Inc.: Hoboken, NJ, USA, 2019. [Google Scholar]
- Kwon, S.O.; Lee, J.J.; Lee, B.H.; Kim, J.H.; Ha, K.H.; Hong, J.P. Loss distribution of three-phase induction motor and BLDC motor according to core materials and operating. IEEE Trans. Magn. 2009, 45, 4740–4743. [Google Scholar] [CrossRef]
- Lee, B.H.; Kwon, S.O.; Sun, T.; Hong, J.P.; Lee, G.H. Modeling of core resistance for d-q equivalent circuit aalysis of IPMSM considering harmonic linkage flux. IEEE Trans. Magn. 2011, 47, 1066–1069. [Google Scholar] [CrossRef]
- Miller, T.J.E.; Hendershot, J.R., Jr. Design of Brushless Permanent Magnet Machines; Motor Design Books, LLC: Venice, FL, USA, 2010. [Google Scholar]
Items | Value | Units | Remark |
---|---|---|---|
Input Voltage | 155 | V | DC voltage |
Output Power | 15 | kW | Maximum power |
Speed | 6000 | rpm | Maximum speed |
Pole/Slot | 16/24 | - | Concentrated winding |
Br | 1.18 | T | 20 °C |
Conductivity of the PM | 694,000 | Ω−1/m | - |
Symbol | Variables | Range | Units |
---|---|---|---|
A | Chamfer | 0.2–1.0 | mm |
B | PM depth | 4.0–5.8 | mm |
C | Barrier width | 1.0–3.0 | mm |
D | Slot opening | 2.0–4.0 | mm |
Symbol | Variable | Range | Units |
---|---|---|---|
A | Chamfer | 0.6–1.0 | mm |
B | PM depth | 4.9–5.8 | mm |
C | Barrier width | 2.0 (Fixed) | mm |
D | Slot opening | 3.0 (Fixed) | mm |
Variables | Prototype | Optimum Model | Units |
---|---|---|---|
Chamfer (A) | 0.2 | 1.0 | mm |
PM depth (B) | 4.0 | 5.8 | mm |
Barrier width (C) | 1.0 | 2.0 | mm |
Slot opening (D) | 2.0 | 3.0 | mm |
Model | Objective Function (mWb) | Squared Value of Objective Function |
---|---|---|
Prototype | 0.1100 | 12.10 × 103 (100%) |
Optimum model | 0.0864 | 7.465 × 103 (61%) |
Model | Estimated Value (W) | 3-D FEA (W) |
---|---|---|
Prototype | - | 401.6 |
Optimum model | 245.0 | 193.8 |
Model | Prototype | Optimum Model | Units | |
---|---|---|---|---|
Loss | ||||
Copper loss | 1007.4 | 1007.4 | Watt | |
Core loss | Yoke | 141.4 | 233.2 | |
Teeth | 452.5 | 543.2 | ||
Rotor | 477.9 | 488.8 | ||
Eddy current loss in PM | 401.6 | 193.0 | ||
Total Loss | 2480.8 | 2465.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.-W.; Lee, B.-H.; Kim, K.-S.; Kim, S.-I. Interior Permanent Magnet Synchronous Motor Design for Eddy Current Loss Reduction in Permanent Magnets to Prevent Irreversible Demagnetization. Energies 2020, 13, 5082. https://doi.org/10.3390/en13195082
Jung J-W, Lee B-H, Kim K-S, Kim S-I. Interior Permanent Magnet Synchronous Motor Design for Eddy Current Loss Reduction in Permanent Magnets to Prevent Irreversible Demagnetization. Energies. 2020; 13(19):5082. https://doi.org/10.3390/en13195082
Chicago/Turabian StyleJung, Jae-Woo, Byeong-Hwa Lee, Kyu-Seob Kim, and Sung-Il Kim. 2020. "Interior Permanent Magnet Synchronous Motor Design for Eddy Current Loss Reduction in Permanent Magnets to Prevent Irreversible Demagnetization" Energies 13, no. 19: 5082. https://doi.org/10.3390/en13195082
APA StyleJung, J. -W., Lee, B. -H., Kim, K. -S., & Kim, S. -I. (2020). Interior Permanent Magnet Synchronous Motor Design for Eddy Current Loss Reduction in Permanent Magnets to Prevent Irreversible Demagnetization. Energies, 13(19), 5082. https://doi.org/10.3390/en13195082