Modeling of a Quasi-Resonant DC Link Inverter Dedicated to Common-Mode Voltage and Ground Current Reduction
Abstract
:1. Introduction
2. Model of AC drive with PQRDCLI
2.1. Model of PQRDCLI in Saber Simulator
2.2. Model of an Induction Motor Common-Mode Impedance
- vCM—common-mode voltage source,
- ZSF—impedance between stator windings and grounded frame,
- CSR—capacitance between short-circuited stator windings terminals and motor shaft,
- ZRF—impedance between the motor shaft and frame,
- S—short-circuited input terminals of star-connected stator windings,
- F—motor frame
- R—motor shaft.
- vSH—shaft voltage.
2.3. Model of Cable
3. Simulation and Experimental Results
4. Comparison with Other Solutions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shirabe, K.; Swamy, M.M.; Kang, J.K.; Hisatsune, M.; Wu, Y.; Kebort, D.; Honea, J. Efficiency Comparison Between Si-IGBT-Based Drive and GaN-Based Drive. IEEE Trans. Ind. Appl. 2013, 50, 566–572. [Google Scholar] [CrossRef]
- Luszcz, J. High Frequency Conducted Emission in AC Motor Drives Fed by Frequency Converters: Sources and Propagation Paths; IEEE Press: Piscataway, NJ, USA; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Shen, W.; Wang, F.; Boroyevich, D.; Liu, Y. Definition and acquisition of CM and DM EMI noise for general-purpose adjustable speed motor drives. In Proceedings of the 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), Aachen, Germany, 20–25 June 2004; pp. 1028–1033. [Google Scholar] [CrossRef]
- Muetze, A.; Binder, A. Don’t lose your bearings. IEEE Ind. Appl. Mag. 2006, 12, 22–31. [Google Scholar] [CrossRef]
- Mechlinski, M.; Schroder, S.; Shen, J.; de Doncker, R.W. Grounding Concept and Common-Mode Filter Design Methodology for Transformerless MV Drives to Prevent Bearing Current Issues. IEEE Trans. Ind. Appl. 2017, 53, 5393–5404. [Google Scholar] [CrossRef]
- Plazenet, T.; Boileau, T.; Caironi, C.; Nahid-Mobarakeh, B. A Comprehensive Study on Shaft Voltages and Bearing Currents in Rotating Machines. IEEE Trans. Ind. Appl. 2018, 54, 3749–3759. [Google Scholar] [CrossRef]
- Chen, S.; Lipo, T.A.; Novotny, D.W. Circulating type motor bearing current in inverter drives. In Proceedings of the IAS ’96. Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting, San Diego, CA, USA, 6–10 October 1996; Volume 1, pp. 162–167. [Google Scholar] [CrossRef]
- Turzynski, M.; Chrzan, P.J. Reducing Common-Mode Voltage and Bearing Currents in Quasi-Resonant DC-Link Inverter. IEEE Trans. Power Electron. 2020, 35, 9555–9564. [Google Scholar] [CrossRef]
- Akagi, H.; Tamura, S. A Passive EMI Filter for Eliminating Both Bearing Current and Ground Leakage Current from an Inverter-Driven Motor. IEEE Trans. Power Electron. 2006, 21, 1459–1469. [Google Scholar] [CrossRef]
- Lai, Y.-S.; Chen, P.-S.; Lee, H.-K.; Chou, J. Optimal Common-Mode Voltage Reduction PWM Technique for Inverter Control with Consideration of the Dead-Time Effects—Part II: Applications to IM Drives with Diode Front End. IEEE Trans. Ind. Appl. 2004, 40, 1613–1620. [Google Scholar] [CrossRef]
- Baranwal, R.; Basu, K.; Mohan, N. Carrier-Based Implementation of SVPWM for Dual Two-Level VSI and Dual Matrix Converter with Zero Common-Mode Voltage. IEEE Trans. Power Electron. 2015, 30, 1471–1487. [Google Scholar] [CrossRef]
- Musznicki, P.; Turzynski, M.; Chrzan, P.J. Accurate modeling of quasi-resonant inverter fed IM drive. In Proceedings of the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 376–381. [Google Scholar] [CrossRef]
- Duan, Z.; Fan, T.; Wen, X.; Zhang, D. Improved SiC Power MOSFET Model Considering Nonlinear Junction Capacitances. IEEE Trans. Power Electron. 2018, 33, 2509–2517. [Google Scholar] [CrossRef]
- Grandi, G.; Casadei, D.; Reggiani, U. Common- and Differential-Mode HF Current Components in AC Motors Supplied by Voltage Source Inverters. IEEE Trans. Power Electron. 2004, 19, 16–24. [Google Scholar] [CrossRef]
- Revol, B.; Roudet, J.; Schanen, J.-L.; Loizelet, P. EMI Study of Three-Phase Inverter-Fed Motor Drives. IEEE Trans. Ind. Appl. 2011, 47, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Bogatin, E. Design rules for microstrip capacitance. IEEE Trans. Compon. Hybrids Manuf. Technol. 1988, 11, 253–259. [Google Scholar] [CrossRef]
- Lai, J.S.; Huang, X.; Pepa, E.; Chen, S.; Nehl, T.W. Inverter EMI modeling and simulation methodologies. IEEE Trans. Ind. Electron. 2006, 53, 736–744. [Google Scholar] [CrossRef]
- Yuan, L.; Yu, H.; Wang, X.; Zhao, Z. Design, simulation and analysis of the low stray inductance bus bar for voltage source inverters. In Proceedings of the 2011 International Conference on Electrical Machines and Systems, Beijing, China, 20–23 August 2011; pp. 1–5. [Google Scholar] [CrossRef]
- Kedarisetti, J.; Mutschler, P. A Motor-Friendly Quasi-Resonant DC-Link Inverter with Lossless Variable Zero-Voltage Duration. IEEE Trans. Power Electron. 2012, 27, 2613–2622. [Google Scholar] [CrossRef]
- Smith, L.D.; Hockanson, D. Distributed SPICE circuit model for ceramic capacitors. In Proceedings of the 51st Electronic Components and Technology Conference (Cat. No.01CH37220), Orlando, FL, USA, 29 May–1 June 2001; pp. 523–528. [Google Scholar] [CrossRef]
- Wijenayake, A.H.; Braun, D.H.; Gasperi, M.L.; Gilmore, T.P.; Pixler, D.C. Modeling and analysis of DC link bus capacitor and inductor heating effect on AC drives. In Proceedings of the IAS ’97 Conference Record of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting, New Orleans, LA, USA, 5–9 October 1997; Volume 2, pp. 1052–1057. [Google Scholar] [CrossRef]
- Ardizzoni, J. A Practical Guide to High-Speed Printed-Circuit-Board Layout. Analog Dialogue 2005, 39, 1–6. [Google Scholar]
- Turzynski, M.; Kulesza, W.J. A Simplified Behavioral MOSFET Model Based on Parameters Extraction for Circuit Simulations. IEEE Trans. Power Electron. 2016, 31, 3096–3105. [Google Scholar] [CrossRef]
- Lauritzen, P.O.; Ma, C.L. A simple diode model with reverse recovery. IEEE Trans. Power Electron. 1991, 6, 188–191. [Google Scholar] [CrossRef]
- Shami, U.T.; Akagi, H. Identification and Discussion of the Origin of a Shaft End-to-End Voltage in an Inverter-Driven Motor. IEEE Trans. Power Electron. 2010, 25, 1615–1625. [Google Scholar] [CrossRef]
- Ohara, S.; Ogasawara, S.; Masatsugu, T.; Orikawa, K.; Yamamoto, Y. A novel active common-noise canceler combining feedforward and feedback control. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 2469–2475. [Google Scholar] [CrossRef]
- Turzyński, M. Induction machine behavioral modeling for prediction of EMI propagation. Bull. Pol. Acad. Sci. Tech. Sci. 2017, 65, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Lipo, T.A.; Fitzgerald, D. Source of induction motor bearing currents caused by PWM inverters. IEEE Trans. Energy Convers. 1996, 11, 25–32. [Google Scholar] [CrossRef]
- GNU Octave: Minimizers. Available online: https://octave.org/doc/v4.0.0/Minimizers.html (accessed on 17 June 2020).
- Nieznanski, J.; Wojewodka, A.; Chrzan, R.J. Comparison of vector sigma-delta modulation and space-vector PWM. In Proceedings of the 2000 26th Annual Conference of the IEEE Industrial Electronics Society. IECON 2000. 2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation 21st Century Technologies and Industrial Opportunities (Cat. No.00CH37141), Nagoya, Japan, 22–28 October 2000; Volume 2, pp. 1322–1327. [Google Scholar] [CrossRef]
- Weber, S.-P.; Hoene, E.; Guttowski, S.; John, W.; Reichl, H. Modeling induction machines for EMC-Analysis. In Proceedings of the 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), Aachen, Germany, 20–25 June 2004; pp. 94–98. [Google Scholar] [CrossRef]
- Muetze, A.; Binder, A. Calculation of Motor Capacitances for Prediction of the Voltage Across the Bearings in Machines of Inverter-Based Drive Systems. IEEE Trans. Ind. Appl. 2007, 43, 665–672. [Google Scholar] [CrossRef]
- Pearsall, N. (Ed.) The Performance of Photovoltaic (PV) Systems: Modelling, Measurement and Assessment; Woodhead Publishing: Amsterdam, The Netherlands; Boston, MA, USA, 2017. [Google Scholar]
- Determining Electric Motor Load and Efficiency. In USA DOE Motor Challenge, A Program of the USA Department of Energy; USA Department of Energy, Office of Energy Efficiency and Renewable Energy: Washington, DC, USA, 1997.
- Li, Y.; Liu, M.; Lau, J.; Zhang, B. A novel method to determine the motor efficiency under variable speed operations and partial load conditions. Appl. Energy 2015, 144, 234–240. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Cm1 | 1.31 nF |
Cm2 | 64 pF |
Cm3 | 102 pF |
Cm4 | 255 pF |
CSR | 105 pF |
CRF | 1310 pF |
CBRG | 29 pF |
Lm1 | 23.9 µH |
Lms | 7.53 mH |
Rm1 | 308 Ω |
Rm2 | 2.86k Ω |
Rmp | 5911 Ω |
Rms | 5.31 Ω |
RSR | 1 Ω |
Parameter | Value |
---|---|
Cc1 | 77 pF |
Lcs | 670 nH |
Mcs | 310 nH |
Rcs | 18 mΩ |
Rc1 | 2.52 Ω |
Parameter | Specification |
---|---|
Rated output power | 2 kW |
VDC | 260 V |
T1–T4, D–D5 | IGBT-IRG4PC40 (Infineon) |
TF–TF6, DF–DF6 | N-MOSFET FDA50N50 (Fairchild) |
CF, C1 | 470 µF (electrolytic) + 220 nF (polypropylene) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turzyński, M.; Frivaldsky, M. Modeling of a Quasi-Resonant DC Link Inverter Dedicated to Common-Mode Voltage and Ground Current Reduction. Energies 2020, 13, 5090. https://doi.org/10.3390/en13195090
Turzyński M, Frivaldsky M. Modeling of a Quasi-Resonant DC Link Inverter Dedicated to Common-Mode Voltage and Ground Current Reduction. Energies. 2020; 13(19):5090. https://doi.org/10.3390/en13195090
Chicago/Turabian StyleTurzyński, Marek, and Michal Frivaldsky. 2020. "Modeling of a Quasi-Resonant DC Link Inverter Dedicated to Common-Mode Voltage and Ground Current Reduction" Energies 13, no. 19: 5090. https://doi.org/10.3390/en13195090
APA StyleTurzyński, M., & Frivaldsky, M. (2020). Modeling of a Quasi-Resonant DC Link Inverter Dedicated to Common-Mode Voltage and Ground Current Reduction. Energies, 13(19), 5090. https://doi.org/10.3390/en13195090