Computationally Efficient Modeling of DC-DC Converters for PV Applications
Abstract
:1. Introduction
2. The Proposed Model
2.1. Single-Diode Model for Transient Simulations
2.2. Transient Model for the DC-DC Converter
2.3. Steady-State Detection and Modeling
- -
- Using (17), find the equivalent input load seen by the PV panel across the DC-DC converter.
- -
- Find the operating point of the PV panel through (11) or (8) and the steady-state input voltage VIN,SS.
- -
- Using (15), determine the steady-state output voltage VOUT,SS.
- -
- Calculate the output current with Ohm’s law, then use (16) to determine the input current IIN,SS.
- -
- Calculate the average current through the inductor as IL,SS = IIN,SS/D.
- -
- To determine the accuracy of the steady state, compare x1 with VOUT,SS, x2 with IIN,SS, and x3 with VIN,SS.
2.4. Computational Costs
3. DC-DC Converter
4. Experimental Validation
4.1. WB1: Constant Voltage Input
4.2. WB2: Outdoor PV
4.3. WB3: Variable Output Load
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nousiainen, L.; Puukko, J.; Mäki, A.; Messo, T.; Huusari, J.; Jokipii, J.; Viinamäki, J.; Lobera, D.T.; Valkealahti, S.; Suntio, T. Photovoltaic generator as an input source for power electronic converters. IEEE Trans. Power Electron. 2013, 28, 3028–3038. [Google Scholar] [CrossRef]
- Agorreta, J.L.; Borrega, M.; López, J.; Marroyo, L. Modeling and control of N-paralleled grid-connected inverters with LCL filter coupled due to grid impedance in PV plants. IEEE Trans. Power Electron. 2011, 26, 770–785. [Google Scholar] [CrossRef]
- Figueres, E.; Garcerá, G.; Sandia, J.; González-Espín, F.; Rubio, J.C. Sensitivity study of the dynamics of three-phase photovoltaic inverters with an LCL grid filter. Proc. IEEE Trans. Ind. Electron. 2009, 56, 706–717. [Google Scholar] [CrossRef] [Green Version]
- Suntio, T.; Leppäaho, J.; Huusari, J.; Nousiainen, L. Issues on solar-generator interfacing with current-fed MPP-tracking converters. IEEE Trans. Power Electron. 2010, 25, 2409–2419. [Google Scholar] [CrossRef]
- Luchetta, A.; Manetti, S.; Piccirilli, M.C.; Reatti, A.; Kazimierczuk, M.K. Comparison of DCM operated PWM DC-DC converter modelling methods including the effects of parasitic components on duty ratio constraint. In Proceedings of the 2015 IEEE 15th International Conference on Environment and Electrical Engineering, Rome, Italy, 10–13 June 2015. [Google Scholar]
- Davoudi, A.; Jatskevich, J.; Chapman, P.L. Averaged modelling of switched-inductor cells considering conduction losses in discontinuous mode. IET Electr. Power Appl. 2007, 1, 402–406. [Google Scholar] [CrossRef]
- Luchetta, A.; Manetti, S.; Piccirilli, M.C.; Reatti, A.; Kazimierczuk, M.K. Effects of parasitic components on diode duty cycle and small-signal model of PWM DC-DC buck converter in DCM. In Proceedings of the 2015 IEEE 15th International Conference on Environment and Electrical Engineering, Rome, Italy, 10–13 June 2015. [Google Scholar]
- Kazimierczuk, M.K. Pulse-Width Modulated DC-DC Power Converters, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2015; ISBN 9781119009524. [Google Scholar]
- Davoudi, A.; Jatskevich, J.; Chapman, P.L. Simple method of including conduction losses for average modelling of switched-inductor cells. Electron. Lett. 2006, 42, 1246–1248. [Google Scholar] [CrossRef]
- Amir, S.; Van Der Zee, R.; Nauta, B. An improved modeling and analysis technique for peak current-mode control-based boost converters. IEEE Trans. Power Electron. 2015, 30, 5309–5317. [Google Scholar] [CrossRef] [Green Version]
- Davoudi, A.; Jatskevich, J.; Chapman, P.L. Numerical dynamic characterization of peak current-mode-controlled DC-DC converters. IEEE Trans. Circuits Syst. II Express Briefs 2009, 56, 906–910. [Google Scholar] [CrossRef]
- Reatti, A.; Balzani, M. Computer aided small-signal analysis for PWM DC-DC converters operated in discontinuous conduction mode. In Proceedings of the Midwest Symposium on Circuits and Systems, Covington, KY, USA, 7–10 August 2005. [Google Scholar]
- Ayachit, A.; Reatti, A.; Kazimierczuk, M.K. Small-signal modeling of PWM dual-SEPIC DC-DC converter by circuit averaging technique. In Proceedings of the IECON Proceedings (Industrial Electronics Conference), Florence, Italy, 23–26 October 2016. [Google Scholar]
- Díaz-González, F.; Sumper, A.; Gomis-Bellmunt, O.; Villafáfila-Robles, R. A review of energy storage technologies for wind power applications. Renew. Sustain. Energy Rev. 2012, 16, 2154–2171. [Google Scholar] [CrossRef]
- González, A.; Goikolea, E.; Barrena, J.A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 2016, 58, 1189–1206. [Google Scholar] [CrossRef]
- Lorenz, E.; Hurka, J.; Heinemann, D.; Beyer, H.G. Irradiance Forecasting for the Power Prediction of Grid-Connected Photovoltaic Systems. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 2, 2–10. [Google Scholar] [CrossRef]
- Diagne, M.; David, M.; Lauret, P.; Boland, J.; Schmutz, N. Review of solar irradiance forecasting methods and a proposition for small-scale insular grids. Renew. Sustain. Energy Rev. 2013, 27, 65–76. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Yang, D.; Reindl, T.; Walsh, W.M. Short-term solar irradiance forecasting using exponential smoothing state space model. Energy 2013, 55, 1104–1113. [Google Scholar] [CrossRef]
- Oliveri, A.; Cassottana, L.; Laudani, A.; Riganti Fulginei, F.; Lozito, G.M.; Salvini, A.; Storace, M. Two FPGA-Oriented High-Speed Irradiance Virtual Sensors for Photovoltaic Plants. IEEE Trans. Ind. Inform. 2017, 13, 157–165. [Google Scholar] [CrossRef]
- Suntio, T.; Messo, T.; Aapro, A.; Kivimäki, J.; Kuperman, A. Review of PV generator as an input source for power electronic converters. Energies 2017, 10, 1076. [Google Scholar] [CrossRef] [Green Version]
- Catelani, M.; Ciani, L.; Kazimierczuk, M.K.; Reatti, A. Matlab PV solar concentrator performance prediction based on triple junction solar cell model. Meas. J. Int. Meas. Confed. 2016, 88, 310–317. [Google Scholar] [CrossRef]
- Laudani, A.; Riganti Fulginei, F.; Salvini, A. Identification of the one-diode model for photovoltaic modules from datasheet values. Sol. Energy 2014, 108, 432–446. [Google Scholar] [CrossRef]
- De Soto, W.; Klein, S.A.; Beckman, W.A. Improvement and validation of a model for photovoltaic array performance. Sol. Energy 2006, 80, 78–88. [Google Scholar] [CrossRef]
- Corless, R.M.; Gonnet, G.H.; Hare, D.E.G.; Jeffrey, D.J.; Knuth, D.E. On the Lambert W function. Adv. Comput. Math. 1996, 5, 329–359. [Google Scholar] [CrossRef]
- Blakesley, J.C.; Castro, F.A.; Koutsourakis, G.; Laudani, A.; Lozito, G.M.; Riganti Fulginei, F. Towards non-destructive individual cell I-V characteristic curve extraction from photovoltaic module measurements. Sol. Energy 2020, 202, 342–357. [Google Scholar] [CrossRef]
- Roberts, K.; Valluri, S.R. Solar Cells and the Lambert W Function. In Celebrating 20 Years of the Lambert W Function; London, ON, Canada, 2016. [Google Scholar]
- Abdulkadir, M.; Samosir, A.S.; Yatim, A.H.M. Modelling and simulation of maximum power point tracking of photovoltaic system in Simulink model. In Proceedings of the 2012 IEEE International Conference on Power and Energy (PECon), Kota Kinabalu, Malaysia, 2–5 December 2012; pp. 325–330. [Google Scholar]
- Suskis, P.; Galkin, I. Enhanced photovoltaic panel model for MATLAB-simulink environment considering solar cell junction capacitance. In Proceedings of the IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 1613–1618. [Google Scholar]
- Kharb, R.K.; Shimi, S.L.; Chatterji, S.; Ansari, M.F. Modeling of solar PV module and maximum power point tracking using ANFIS. Renew. Sustain. Energy Rev. 2014, 33, 602–612. [Google Scholar] [CrossRef]
- Takruri, M.; Farhat, M.; Barambones, O.; Ramos-Hernanz, J.A.; Turkieh, M.J.; Badawi, M.; AlZoubi, H.; Abdus Sakur, M. Maximum Power Point Tracking of PV System Based on Machine Learning. Energies 2020, 13, 692. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Yan, K.; Ren, Z.; Xiao, W. Designing localized MPPT for PV systems using fuzzy-weighted extreme learning machine. Energies 2018, 11, 2615. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Hasan, N.; Bharath Kurukuru, V.S.; Ali Khan, M.; Haque, A. Fault Classification for Single Phase Photovoltaic Systems using Machine Learning Techniques. In Proceedings of the 2018 8th IEEE India International Conference on Power Electronics (IICPE), Jaipur, India, 13–15 December 2018; pp. 1–6. [Google Scholar]
- Laudani, A.; Riganti Fulginei, F.; Salvini, A. High performing extraction procedure for the one-diode model of a photovoltaic panel from experimental I-V curves by using reduced forms. Sol. Energy 2014, 103, 316–326. [Google Scholar] [CrossRef]
- Shiau, J.K.; Ma, C.W. Li-Ion battery charging with a buck-boost power converter for a solar powered battery management system. Energies 2013, 6, 1669–1699. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.; Stuart, T. Selective buck-boost equalizer for series battery packs. IEEE Trans. Aerosp. Electron. Syst. 2000, 36, 201–211. [Google Scholar] [CrossRef]
- Arsalan, M.; Iftikhar, R.; Ahmad, I.; Hasan, A.; Sabahat, K.; Javeria, A. MPPT for photovoltaic system using nonlinear backstepping controller with integral action. Sol. Energy 2018, 170, 192–200. [Google Scholar] [CrossRef]
- Davoudi, A.; Jatskevich, J.; De Rybel, T. Numerical state-space average-value modeling of PWM dc-dc converters operating in DCM and CCM. IEEE Trans. Power Electron. 2006, 21, 1003–1012. [Google Scholar] [CrossRef]
- Pavlovic, T.; Bjazi, T.; Ban, Ž. Simplified averaged models of dc-dc power converters suitable for controller design and microgrid simulation. IEEE Trans. Power Electron. 2013, 28, 3266–3275. [Google Scholar] [CrossRef]
- Babaei, E.; Seyed Mahmoodieh, M.E.; Mashinchi Mahery, H. Operational modes and output-voltage-ripple analysis and design considerations of buck-boost DC-DC converters. IEEE Trans. Ind. Electron. 2012, 59, 381–391. [Google Scholar] [CrossRef]
- Texas Instruments SLVA721A—Basic Calculation of an Inverting Buck-Boost Power Stage. 2017. Available online: https://www.ti.com/lit/an/slva721a/slva721a.pdf (accessed on 29 September 2020).
- Cheddadi, Y.; Errahimi, F.; Es-sbai, N. Design and verification of photovoltaic MPPT algorithm as an automotive-based embedded software. Sol. Energy 2018, 171, 414–425. [Google Scholar] [CrossRef]
- Humada, A.M.; Hojabri, M.; Mekhilef, S.; Hamada, H.M. Solar cell parameters extraction based on single and double-diode models: A review. Renew. Sustain. Energy Rev. 2016, 56, 494–509. [Google Scholar] [CrossRef] [Green Version]
- Mazhari, B. An improved solar cell circuit model for organic solar cells. Sol. Energy Mater. Sol. Cells 2006, 90, 1021–1033. [Google Scholar] [CrossRef]
- Cheknane, A.; Hilal, H.S.; Djeffal, F.; Benyoucef, B.; Charles, J.-P. An equivalent circuit approach to organic solar cell modelling. Microelectron. J. 2008, 39, 1173–1180. [Google Scholar] [CrossRef]
- Lun, S.; Wang, S.; Yang, G.H.; Guo, T.T. A new explicit double-diode modeling method based on Lambert W-function for photovoltaic arrays. Sol. Energy 2015, 116, 69–82. [Google Scholar] [CrossRef]
- Gao, X.; Cui, Y.; Hu, J.; Xu, G.; Yu, Y. Lambert W-function based exact representation for double diode model of solar cells: Comparison on fitness and parameter extraction. Energy Convers. Manag. 2016, 127, 443–460. [Google Scholar] [CrossRef]
- Wen, L.; Zhou, K.; Yang, S.; Lu, X. Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting. Energy 2019, 171, 1053–1065. [Google Scholar] [CrossRef]
- Li, L.; Ota, K.; Dong, M. When weather matters: IoT-based electrical load forecasting for smart grid. IEEE Commun. Mag. 2017, 55, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Raza, M.Q.; Khosravi, A. A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352–1372. [Google Scholar] [CrossRef]
Parameter | Value | Description |
---|---|---|
f0 | 20 kHz | Switching Frequency |
D | 0.3–0.6 | Duty Cycle Range |
Vi,max | 33.3 V | Maximum Input Voltage |
Io | 6.67–40 A | Output Current |
RL | 0-20 Ω | Load Resistance |
ΔVo | 0.3 V | Maximum Output Ripple |
Po | 100–295 W | Output Power |
Component | Measured |
---|---|
Inductance L | 224.62 µH/ESRL = 0.023 Ω |
Capacitance C | 662.32 µF/ESRC = 0.016 Ω |
Input Capacitance CIN | 2937.2µF/ESRCIN = 0.016 Ω |
VOC (V) | ISC (A) | VMP (V) | IMP (A) |
---|---|---|---|
37.3 | 8.22 | 29.4 | 7.82 |
Instrument | Characteristics |
---|---|
Tektronix TDS3014b Oscilloscope | Four channels, up to 100 MHz 1 mV/div to 10 V/div vert. sensitivity 4 ns/div minimal time base GPIB and LAN connectivity |
Itech IT 8615 Electronic Load | Up to 420 Vrms range and 1800 VA 45-Hz to 450-Hz frequency range GPIB, LAN, and USB connectivity |
TerraSAS ETS60 Solar Simulator | Output up to 66 V (OC) and 14 A (SC) Maximum output power 714 W I-V curve resolution of 1024 points LAN connectivity |
VOC (V) | ISC (A) | VMP (V) | IMP (A) |
---|---|---|---|
20 | 1.10 | 17.22 | 1.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corti, F.; Laudani, A.; Lozito, G.M.; Reatti, A. Computationally Efficient Modeling of DC-DC Converters for PV Applications. Energies 2020, 13, 5100. https://doi.org/10.3390/en13195100
Corti F, Laudani A, Lozito GM, Reatti A. Computationally Efficient Modeling of DC-DC Converters for PV Applications. Energies. 2020; 13(19):5100. https://doi.org/10.3390/en13195100
Chicago/Turabian StyleCorti, Fabio, Antonino Laudani, Gabriele Maria Lozito, and Alberto Reatti. 2020. "Computationally Efficient Modeling of DC-DC Converters for PV Applications" Energies 13, no. 19: 5100. https://doi.org/10.3390/en13195100
APA StyleCorti, F., Laudani, A., Lozito, G. M., & Reatti, A. (2020). Computationally Efficient Modeling of DC-DC Converters for PV Applications. Energies, 13(19), 5100. https://doi.org/10.3390/en13195100