A Review of Lithium-Ion Battery Fire Suppression
Abstract
:1. Introduction
2. Lithium-Ion Battery Components
2.1. Cathode
2.2. Anode
2.3. Separator
2.4. Electrolyte
3. Lithium-Ion Battery Systems
4. Thermal Runaway and Fire
- Electrical abuse (over-charging/discharging) [36,102,103,104,105,106]: Over-charging or discharging to voltages beyond the manufacturers specified charge window can cause lithium plating, or dendrite formation, on the anode. Over time, this may pierce the separator causing a short circuit between electrodes and lead to thermal runaway.
- Internal short circuit (ISC) [94]: An ISC occurs due to the failure of the separator, allowing contact between the cathode and anode via the electrolyte. This can happen due to any of the above abuse conditions, or as a result of a manufacturing fault.
5. Fire Protection Techniques
5.1. Safety at Cell Level
5.2. Safety at Module and Pack Level
5.3. Safety at Compartment Level
6. Lithium-Ion Battery Fire Detection and Suppression
- Class A—fires involving solid materials such as textiles, wood or paper.
- Class B—fires involving flammable liquids such as oils, petrol, or diesel.
- Class C—fires involving combustible gases.
- Class D—fires involving metals.
- Class E—fires involving energised electrical devices.
- Class F—fires involving combustible cooking oils such as in deep-fat fryers.
6.1. Types of Extinguishants—The Basics
6.1.1. Water Extinguishants
- Water jet: Water jet suppressants apply a stream of water directly to burning materials, providing cooling and inhibiting re-ignition. Water jets should not be employed on live electrical equipment due to electric shock concerns.
- Water spray or sprinkler: Water spray or sprinkler suppressants use a spray of fine water droplets, each droplet is surrounded by air, which is non-conductive. The spray has enough momentum for droplets to penetrate the fire plume and cool surfaces, as well as expanding some energy through vaporisation to cool the air.
- Water with added surfactants: Adding surfactants to the water can improve the efficacy of water extinguishment. Surfactants decrease the water’s surface tension so that it coats the burning materials and cools more efficiently.
- Water mist: Water mist comprises a range of droplet sizes under 1000 μm, droplets that are much smaller than those from a sprinkler. Finer droplets have a larger surface area to volume ratio compared to larger droplets resulting in a greater absorption of heat energy from the hot air for the same volume of water, while the larger drops within the drop size distribution can penetrate the fire plume and cool the burning material.
6.1.2. Foam Extinguishants
6.1.3. Powder/Dry Powder Extinguishants
6.1.4. Carbon Dioxide (CO2)
6.1.5. Halon-Based Extinguishants
6.2. Lithium-Ion Battery Fire Suppression Studies
6.3. Water Mist Characterisation
- Droplet size distribution (DSD);
- Spray cone angle;
- Spray velocity;
- Mass flow rate;
- Spray momentum.
6.3.1. Droplet Size Distribution (DSD)
6.3.2. Spray Cone Angle
6.3.3. Spray Velocity
6.3.4. Mass Flow Rate
6.3.5. Spray Momentum
6.4. Water Mist Nozzle Characteristics
6.5. Mechanisms of Fire Extinguishment using Water Mist
- Gas-phase cooling;
- Oxygen depletion and flammable vapour dilution;
- Wetting and cooling of the fuel surface;
- Radiation attenuation;
- Kinetic effects, enclosure effects, turbulent mixing and cycling.
6.5.1. Gas-Phase Cooling
6.5.2. Oxygen Depletion and Flammable Vapour Dilution
6.5.3. Wetting and Cooling of the Fuel Surface
6.5.4. Radiation Attenuation
6.5.5. Kinetic Effects, Enclosure Effects, Turbulent Mixing and Cycling
6.6. Water Mist Fire Suppression System Characteristics
7. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature:
BMS | Battery Monitoring System |
CID | Current Interrupt Device |
DEC | Diethyl Carbonate |
DMC | Dimethyl Carbonate |
DNV-GL | Det Norske Veritas and Germanischer Lloyd |
DSD | Droplet Size Distribution |
EC | Ethylene Carbonate |
EMC | Ethyl Methyl Carbonate |
EV | Electric Vehicle |
FAA | Federal Aviation Administration |
FDS | Fire Dynamics Simulator |
HEV | Hybrid Electric Vehicle |
HF | Hydrogen Fluoride |
HRR | Heat Release Rate |
ISC | Internal Short Circuit |
LCO | Lithium Cobalt Oxide |
LCP | Lithium Cobalt Phosphate |
LFP | Lithium Iron Phosphate |
LFSF | Lithium Iron Fluorosulphate |
LiB | Lithium-ion Battery |
LMO | Lithium Manganese Oxide |
LTO | Lithium Titanate Oxide |
LTS | Lithium Titanium Sulphide |
MMD | Mass Mean Diameter |
MSDS | Material Safety Data Sheet |
NCA | Nickel Cobalt Aluminium Oxide |
NCM | Nickel Cobalt Manganese Oxide |
NFPA | National Fire Protection Association |
PC | Propylene Carbonate |
PCM | Phase Change Material |
PE | Polyethylene |
PP | Polypropylene |
PTC | Positive Temperature Coefficient |
REMP | Required Extinguishing Medium Portion |
SEI | Solid-Electrolyte Interface |
SFPE | Society of Fire Protection Engineers |
SHAR | Spray Heat Absorption Ratio |
SMD | Sauter Mean Diameter |
TMS | Thermal Management System |
VMD | Volumetric Median Diameter |
WMFSS | Water Mist Fire Suppression System |
References
- Whittingham, M.S. Chalcogenide Battery. U.S. Patent No. 4,009,052, 22 February 1977. [Google Scholar]
- Mizushima, K.; Jones, P.C.; Wiseman, P.J.; Goodenough, J.B. LixCoO2 (0< x <-1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789. [Google Scholar]
- Thackeray, M.; David, W.; Bruce, P.; Goodenough, J.B. Lithium insertion into manganese spinels. Mater. Res. Bull. 1983, 18, 461–472. [Google Scholar] [CrossRef]
- Yamahira, T.; Kato, H.; Anzai, M. Nonaqueous Electrolyte Secondary Battery. U.S. Patent No. 5,053,297, 1 October 1991. [Google Scholar]
- Blum, A.F.; Long, R.T., Jr. Fire Hazard Assessment of Lithium Ion Battery Energy Storage Systems; Springer: New York, NY, USA, 2016. [Google Scholar]
- Whittingham, M.S. Electrical energy storage and intercalation chemistry. Science 1976, 192, 1126–1127. [Google Scholar] [CrossRef] [PubMed]
- Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Pacala, S.; Socolow, R. Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science 2004, 305, 968–972. [Google Scholar] [CrossRef] [Green Version]
- Cavanagh, K.; Ward, J.; Behrens, S.; Bhatt, A.; Ratnam, E.; Oliver, E.; Hayward, J. Electrical Energy Storage: Technology Overview and Applications; CSIRO: Canberra, Australia, 2015. [Google Scholar]
- Roy, P.; Srivastava, S.K. Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 2015, 3, 2454–2484. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Li, J.; Suzuki, T.; Naga, K.; Ohzawa, Y.; Nakajima, T. Electrochemical performance of LiFePO4 modified by pressure-pulsed chemical vapor infiltration in lithium-ion batteries. Mater. Sci. Eng. B 2007, 142, 86–92. [Google Scholar] [CrossRef]
- Takahashi, M.; Ohtsuka, H.; Akuto, K.; Sakurai, Y. Confirmation of long-term cyclability and high thermal stability of LiFePO4 in prismatic lithium-ion cells. J. Electrochem. Soc. 2005, 152, A899–A904. [Google Scholar] [CrossRef]
- Zaghib, K.; Shim, J.; Guerfi, A.; Charest, P.; Striebel, K.A. Effect of carbon source as additives in LiFePO4 as positive electrode for lithium-ion batteries. Electrochem. Solid-State Lett. 2005, 8, A207–A210. [Google Scholar] [CrossRef]
- Jiang, J.; Dahn, J.R. ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes. Electrochem. Commun. 2004, 6, 39–43. [Google Scholar] [CrossRef]
- Dong, Y.Z.; Zhao, Y.M.; Chen, Y.H.; He, Z.F.; Kuang, Q. Optimized carbon-coated LiFePO4 cathode material for lithium-ion batteries. Mater. Chem. Phys. 2009, 115, 245–250. [Google Scholar] [CrossRef]
- Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Martha, S.K.; Haik, O.; Zinigrad, E.; Exnar, I.; Drezen, T.; Miners, J.H.; Aurbach, D. On the thermal stability of olivine cathode materials for lithium-ion batteries. J. Electrochem. Soc. 2011, 158, A1115–A1122. [Google Scholar] [CrossRef]
- Shi, J.L.; Xiao, D.D.; Ge, M.; Yu, X.; Chu, Y.; Huang, X.; Zhang, X.D.; Yin, Y.X.; Yang, X.Q.; Guo, Y.G. High-Capacity Cathode Material with High Voltage for Li-Ion Batteries. Adv. Mater. 2018, 30, 1705575. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zheng, J.; Wang, C.; Gu, M. Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano Energy 2018, 49, 434–452. [Google Scholar] [CrossRef]
- Sun, Y.-Y.; Liu, S.; Hou, Y.-K.; Li, G.-R.; Gao, X.-P. In-situ surface modification to stabilize Ni-rich layered oxide cathode with functional electrolyte. J. Power Sources 2019, 410, 115–123. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Wang, Z.; Guo, H.; Li, T.; Meng, K.; Wang, J. A novel layered Ni-rich cathode hierarchical architecture of densely integrating hydroxide nanoflakes onto oxide microspheres with superior lithium storage property. Mater. Chem. Front. 2018, 2, 1822–1828. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, H.; Xie, J.; Lin, Y.; Yu, J.; Chen, L. Preparation, Lithium Storage Performance and Thermal Stability of Nickel-Rich Layered LiNi0.815Co0.15Al0.035O2/RGO Composites. ChemElectroChem 2018, 5, 3176–3182. [Google Scholar]
- Jang, S.H.; Jung, K.; Yim, T. Silyl-group functionalized organic additive for high voltage Ni-rich cathode material. Curr. Appl. Phys. 2018, 18, 1345–1351. [Google Scholar] [CrossRef]
- Nayak, P.K.; Erickson, E.M.; Schipper, F.; Penki, T.R.; Munichandraiah, N.; Adelhelm, P.; Sclar, H.; Amalraj, F.; Markovsky, B.; Aurbach, D. Review on challenges and recent advances in the electrochemical performance of high capacity Li-and Mn-rich cathode materials for Li-ion batteries. Adv. Energy Mater. 2018, 8, 1702397. [Google Scholar] [CrossRef]
- Hou, X.; Wang, Y.; Song, J.; Gu, H.; Guo, R.; Liu, W.; Mao, Y.; Xie, J. Electrochemical behavior of Mn-based Li-rich cathode material Li1.15Ni0.17Co0.11Mn0.57O2 fluorinated by NH4F. Solid State Ion. 2018, 325, 1–6. [Google Scholar]
- Liu, Y.; Fan, X.; Zhang, Z.; Wu, H.-H.; Liu, D.; Dou, A.; Su, M.; Zhang, Q.; Chu, D. Enhanced electrochemical performance of Li-rich layered cathode materials by combined Cr doping and LiAlO2 coating. Acs Sustain. Chem. Eng. 2018, 7, 2225–2235. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, Z.; Yin, C.; Yang, S.; Li, J. Fabrication of nanoplate Li-rich cathode material via surfactant-assisted hydrothermal method for lithium-ion batteries. Ceram. Int. 2018, 44, 20514–20523. [Google Scholar] [CrossRef]
- Ding, X.; Xiao, L.-N.; Li, Y.-X.; Tang, Z.-F.; Wan, J.-W.; Wen, Z.-Y.; Chen, C.-H. Improving the electrochemical performance of Li-rich Li1.2Ni0.2Mn0.6O2 by using Ni-Mn oxide surface modification. J. Power Sources 2018, 390, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, K.; Mitlin, D.; Paek, E.; Wang, M.; Jiang, F.; Huang, Y.; Yang, Z.; Gong, Y.; Gu, L. Li-Rich Li [Li1/6Fe1/6Ni1/6Mn1/2] O2 (LFNMO) Cathodes: Atomic Scale Insight on the Mechanisms of Cycling Decay and of the Improvement due to Cobalt Phosphate Surface Modification. Small 2018, 14, 1802570. [Google Scholar] [CrossRef]
- Li, X.; Qiao, Y.; Guo, S.; Jiang, K.; Ishida, M.; Zhou, H. A New Type of Li-Rich Rock-Salt Oxide Li2Ni1/3Ru2/3O3 with Reversible Anionic Redox Chemistry. Adv. Mater. 2019, 31, 1807825. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Z.; Huang, J.; Deng, W.; Li, X.; Zhang, H.; Wen, Z. Graphene-decorated carbon-coated LiFePO4 nanospheres as a high-performance cathode material for lithium-ion batteries. Carbon 2018, 127, 149–157. [Google Scholar] [CrossRef]
- Yao, J.; Li, Y.; Massé, R.C.; Uchaker, E.; Cao, G. Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond. Energy Storage Mater. 2018, 11, 205–259. [Google Scholar] [CrossRef]
- Bak, S.-M.; Shadike, Z.; Lin, R.; Yu, X.; Yang, X.-Q. In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research. NPG Asia Mater. 2018, 10, 563–580. [Google Scholar] [CrossRef] [Green Version]
- Nam, K.W.; Bak, S.M.; Hu, E.; Yu, X.; Zhou, Y.; Wang, X.; Wu, L.; Zhu, Y.; Chung, K.Y.; Yang, X.Q. Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries. Adv. Funct. Mater. 2013, 23, 1047–1063. [Google Scholar] [CrossRef]
- McDowall, J. Understanding lithium-ion technology. In Proceedings of the Battcon, Marco Island, FL, USA, 5–7 May 2008. [Google Scholar]
- Huang, P.; Ping, P.; Li, K.; Chen, H.; Wang, Q.; Wen, J.; Sun, J. Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode. Appl. Energy 2016, 183, 659–673. [Google Scholar] [CrossRef]
- Yao, X.; Xie, S.; Chen, C.; Wang, Q.; Sun, J.; Li, Y.; Lu, S. Comparisons of graphite and spinel Li1.33Ti1.67O4 as anode materials for rechargeable lithium-ion batteries. Electrochim. Acta 2005, 50, 4076–4081. [Google Scholar] [CrossRef]
- Kim, H.; Han, B.; Choo, J.; Cho, J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed. 2008, 47, 10151–10154. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kopold, P.; van Aken, P.A.; Maier, J.; Yu, Y. Energy storage materials from nature through nanotechnology: A sustainable route from reed plants to a silicon anode for lithium-ion batteries. Angew. Chem. Int. Ed. 2015, 54, 9632–9636. [Google Scholar] [CrossRef]
- Zhang, W.M.; Hu, J.S.; Guo, Y.G.; Zheng, S.F.; Zhong, L.S.; Song, W.G.; Wan, L.J. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-Ion batteries. Adv. Mater. 2008, 20, 1160–1165. [Google Scholar] [CrossRef]
- Prikhodchenko, P.V.; Gun, J.; Sladkevich, S.; Mikhaylov, A.A.; Lev, O.; Tay, Y.Y.; Batabyal, S.K.; Yu, D.Y. Conversion of hydroperoxoantimonate coated graphenes to Sb2S3@ graphene for a superior lithium battery anode. Chem. Mater. 2012, 24, 4750–4757. [Google Scholar] [CrossRef]
- Choi, S.; Cho, Y.G.; Kim, J.; Choi, S.N.; Song, H.K.; Wang, G.; Park, S. Mesoporous Germanium Anode Materials for Lithium-Ion Battery with Exceptional Cycling Stability in Wide Temperature Range. Small 2017, 13, 1603045. [Google Scholar] [CrossRef]
- Chan, C.K.; Zhang, X.F.; Cui, Y. High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 2008, 8, 307–309. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, Q.; Zhao, Y.; He, R.; Xu, M.; Feng, S.; Li, S.; Zhou, L.; Mai, L. Silicon oxides: A promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 2019, 48, 285–309. [Google Scholar] [CrossRef]
- Reddy, M.; Rao, G.S.; Chowdari, B. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457. [Google Scholar] [CrossRef] [PubMed]
- Shang, H.; Zuo, Z.; Li, L.; Wang, F.; Liu, H.; Li, Y.; Li, Y. Ultrathin graphdiyne nanosheets grown in situ on copper nanowires and their performance as lithium-ion battery anodes. Angew. Chem. Int. Ed. 2018, 57, 774–778. [Google Scholar] [CrossRef] [PubMed]
- Tzadikov, J.; Auinat, M.; Barrio, J.; Volokh, M.; Peng, G.; Gervais, C.; Ein-Eli, Y.; Shalom, M. Layered Boron–Nitrogen–Carbon–Oxygen Materials with Tunable Composition as Lithium-Ion Battery Anodes. ChemSusChem 2018, 11, 2912–2920. [Google Scholar] [CrossRef]
- Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Comput. Mater. 2018, 4, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Julien, C.; Mauger, A.; Vijh, A.; Zaghib, K. Lithium batteries. In Lithium Batteries; Springer: Cham, Switzerland, 2016; pp. 29–68. [Google Scholar]
- Arora, P.; Zhang, Z. Battery separators. Chem. Rev. 2004, 104, 4419–4462. [Google Scholar] [CrossRef]
- Herle, S.P.; Gordon, J.G. Ceramic Coating on Battery Separators. U.S. Patent No. 10,193,116 B2, 29 January 2019. [Google Scholar]
- Shi, C.; Zhang, P.; Chen, L.; Yang, P.; Zhao, J. Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries. J. Power Sources 2014, 270, 547–553. [Google Scholar] [CrossRef]
- Shin, W.-K.; Kim, D.-W. High performance ceramic-coated separators prepared with lithium ion-containing SiO2 particles for lithium-ion batteries. J. Power Sources 2013, 226, 54–60. [Google Scholar] [CrossRef]
- Kim, C.-S.; Yoo, J.-S.; Jeong, K.-M.; Kim, K.; Yi, C.-W. Investigation on internal short circuits of lithium polymer batteries with a ceramic-coated separator during nail penetration. J. Power Sources 2015, 289, 41–49. [Google Scholar] [CrossRef]
- Orendorff, C.J. The role of separators in lithium-ion cell safety. Electrochem. Soc. Interface 2012, 21, 61. [Google Scholar] [CrossRef]
- Zhang, S.S. A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources 2007, 164, 351–364. [Google Scholar] [CrossRef]
- Li, Z.; Xiong, Y.; Sun, S.; Zhang, L.; Li, S.; Liu, X.; Xu, Z.; Xu, S. Tri-layer nonwoven membrane with shutdown property and high robustness as a high-safety lithium ion battery separator. J. Membr. Sci. 2018, 565, 50–60. [Google Scholar] [CrossRef]
- Costa, C.M.; Kundu, M.; Cardoso, V.F.; Machado, A.V.; Silva, M.M.; Lanceros-Méndez, S. Silica/poly(vinylidene fluoride) porous composite membranes for lithium-ion battery separators. J. Membr. Sci. 2018, 564, 842–851. [Google Scholar] [CrossRef]
- Sun, G.; Dong, G.; Kong, L.; Yan, X.; Tian, G.; Qi, S.; Wu, D. Robust polyimide nanofibrous membrane with porous-layer-coated morphology by in situ self-bonding and micro-crosslinking for lithium-ion battery separator. Nanoscale 2018, 10, 22439–22447. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, K.; Mo, Y.; Wang, S.; Han, D.; Xiao, M.; Meng, Y. Highly safe lithium-ion batteries: High strength separator from polyformaldehyde/cellulose nanofibers blend. J. Power Sources 2018, 400, 502–510. [Google Scholar] [CrossRef]
- Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Sun, J.; Chen, C. Thermal stability of LiPF6/EC + DMC + EMC electrolyte for lithium ion batteries. Rare Metals 2006, 25 (Suppl. 1), 94–99. [Google Scholar] [CrossRef]
- Dahbi, M.; Ghamouss, F.; Tran-Van, F.; Lemordant, D.; Anouti, M. Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. J. Power Sources 2011, 196, 9743–9750. [Google Scholar] [CrossRef]
- Li, F.; Gong, Y.; Jia, G.; Wang, Q.; Peng, Z.; Fan, W.; Bai, B. A novel dual-salts of LiTFSI and LiODFB in LiFePO4-based batteries for suppressing aluminum corrosion and improving cycling stability. J. Power Sources 2015, 295, 47–54. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, L.; Yu, Y.; Sun, J. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 2019, 55, 93–114. [Google Scholar] [CrossRef]
- Zeng, Z.; Wu, B.; Xiao, L.; Jiang, X.; Chen, Y.; Ai, X.; Yang, H.; Cao, Y. Safer lithium ion batteries based on nonflammable electrolyte. J. Power Sources 2015, 279, 6–12. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, S.; Allen, J.L.; Jow, T.R. Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate. J. Electrochem. Soc. 2002, 149, A1079–A1082. [Google Scholar] [CrossRef]
- Zhang, Q.; Noguchi, H.; Wang, H.; Yoshio, M.; Otsuki, M.; Ogino, T. Improved thermal stability of LiCoO2 by cyclotriphosphazene additives in lithium-ion batteries. Chem. Lett. 2005, 34, 1012–1013. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, Q.; Sun, J. Electrochemical performance and thermal stability analysis of LiNixCoyMnzO2 cathode based on a composite safety electrolyte. J. Hazard. Mater. 2018, 351, 260–269. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, Q.; Li, K.; Ping, P.; Jiang, L.; Sun, J. A self-cooling and flame-retardant electrolyte for safer lithium ion batteries. Sustain. Energy Fuels 2018, 2, 1323–1331. [Google Scholar] [CrossRef]
- Gogotsi, Y.; Zhao, M.-Q.; Cheng, X.-B. Additives for Suppressing Dendritic Growth in Batteries. U.S. Patent Application No. 16/050,987, 7 February 2019. [Google Scholar]
- Ergen, O.; Zettl, A.K. High Temperature Li-Ion Battery Cells Utilizing Boron Nitride Aerogels And Boron Nitride Nanotubes. U.S. Patent Application No. 15/822,563, 16 June 2020. [Google Scholar]
- Schmitz, R.; Garsuch, A.; Chesneau, F.F.; Schmidt, M.; Yamamoto, T.; Semrau, G. Overcharge Protection Electrolyte Additive for Lithium Ion Batteries. U.S. Patent No. 10,153,516, 11 December 2018. [Google Scholar]
- Lewandowski, A.; Świderska-Mocek, A. Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies. J. Power Sources 2009, 194, 601–609. [Google Scholar] [CrossRef]
- Francis, C.; Louey, R.; Sammut, K.; Best, A.S. Thermal stability of pyrrolidinium-FSI ionic liquid electrolyte and lithium-ion electrodes at elevated temperatures. J. Electrochem. Soc. 2018, 165, A1204. [Google Scholar] [CrossRef]
- Moganty, S.; Wu, Y.; Abbate, L.; Brown, K.; Sinicropi, J.; Torres, G. Modified Ionic Liquids Containing Triazine. U.S. Patent Application No. 16/037,902, 17 January 2019. [Google Scholar]
- Feng, J.; Ai, X.; Cao, Y.; Yang, H. Possible use of non-flammable phosphonate ethers as pure electrolyte solvent for lithium batteries. J. Power Sources 2008, 177, 194–198. [Google Scholar] [CrossRef]
- Feng, J.; Sun, X.; Ai, X.; Cao, Y.; Yang, H. Dimethyl methyl phosphate: A new nonflammable electrolyte solvent for lithium-ion batteries. J. Power Sources 2008, 184, 570–573. [Google Scholar] [CrossRef]
- Takechi, K.; Yang, R. Aqueous Electrolyte with Ethers and Batteries Using the Electrolyte. U.S. Patent No. 10,193,188, 29 January 2019. [Google Scholar]
- Takechi, K.; Yang, R. Aqueous Electrolytes with Protonic Ionic Liquid and Batteries Using the Electrolyte. U.S. Patent No. 15/663,262, 31 January 2019. [Google Scholar]
- Zhu, Y.; Wang, X.; Hou, Y.; Gao, X.; Liu, L.; Wu, Y.; Shimizu, M. A new single-ion polymer electrolyte based on polyvinyl alcohol for lithium ion batteries. Electrochim. Acta 2013, 87, 113–118. [Google Scholar] [CrossRef]
- Du, Z.; Su, Y.; Qu, Y.; Zhao, L.; Jia, X.; Mo, Y.; Yu, F.; Du, J.; Chen, Y. A mechanically robust, biodegradable and high performance cellulose gel membrane as gel polymer electrolyte of lithium-ion battery. Electrochim. Acta 2019, 299, 19–26. [Google Scholar] [CrossRef]
- Zhao, L.; Fu, J.; Du, Z.; Jia, X.; Qu, Y.; Yu, F.; Du, J.; Chen, Y. High-strength and flexible cellulose>/PEG based gel polymer electrolyte with high performance for lithium ion batteries. J. Membr. Sci. 2020, 593, 117428. [Google Scholar] [CrossRef]
- Wakihara, M.; Kadoma, Y.; Kumagai, N.; Mita, H.; Araki, R.; Ozawa, K.; Ozawa, Y. Development of nonflammable lithium ion battery using a new all-solid polymer electrolyte. J. Solid State Electrochem. 2012, 16, 847–855. [Google Scholar] [CrossRef]
- Youcef, H.B.; Armand, M.; Orayech, B.; Saurel, D.; Shanmukaraj, D. Solid Polymer Electrolyte Based on Modified Cellulose and Its Use in Lithium or Sodium Secondary Batteries. U.S. Patent Application No. 15/663,262, 3 January 2019. [Google Scholar]
- Yushin, G.; Turcheniuk, K.; Yiran, X.; Song, A.-Y.; Borodin, O.; Nitta, N. Solid Electrolyte Technology with Rearrangeable Bonds for Metal And Metal-Ion Batteries. U.S. Patent Application No. 16/022,572, 3 January 2019. [Google Scholar]
- Spotnitz, R.; Franklin, J. Abuse behavior of high-power, lithium-ion cells. J. Power Sources 2003, 113, 81–100. [Google Scholar] [CrossRef]
- Otto, A.; Rzepka, S.; Mager, T.; Michel, B.; Lanciotti, C.; Günther, T.; Kanoun, O. Battery Management Network for Fully Electrical Vehicles Featuring Smart Systems at Cell and Pack Level. In Advanced Microsystems for Automotive Applications; Springer: Berlin/Heidelberg, Germany, 2012; pp. 3–14. [Google Scholar]
- Joachin, H.; Kaun, T.D.; Zaghib, K.; Prakash, J. Electrochemical and Thermal studies of LiFePO4 cathode in lithium-ion cells. ECS Trans. 2008, 6, 11–16. [Google Scholar] [CrossRef]
- Yang, H.; Amiruddin, S.; Bang, H.J.; Sun, Y.-K.; Prakash, J. A review of Li-ion cell chemistries and their potential use in hybrid electric vehicles. J. Ind. Eng. Chem. 2006, 12, 12–38. [Google Scholar]
- Al-Hallaj, S.; Selman, J.R. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications. J. Power Sources 2002, 110, 341–348. [Google Scholar] [CrossRef]
- Ruiz, V.; Pfrang, A.; Kriston, A.; Omar, N.; van den Bossche, P.; Boon-Brett, L. A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles. Renew. Sustain. Energy Rev. 2018, 81, 1427–1452. [Google Scholar] [CrossRef]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10 (Suppl. C), 246–267. [Google Scholar] [CrossRef]
- Larsson, F.; Andersson, P.; Mellander, B.-E. Lithium-ion battery aspects on fires in electrified vehicles on the basis of experimental abuse tests. Batteries 2016, 2, 9. [Google Scholar] [CrossRef]
- Lecocq, A.; Bertana, M.; Truchot, B.; Marlair, G. Comparison of the fire consequences of an electric vehicle and an internal combustion engine vehicle. In Proceedings of the International Conference on Fires In Vehicles-FIVE 2012, Chicago, IL, USA, 27–28 September 2012; SP Technical Research Institute of Sweden: Boras, Sweden, 2012. [Google Scholar]
- Depetro, A. Future Submarine Fire Safety Study. MSc. Thesis, Victoria University, Melbourne, Australia, 2016. [Google Scholar]
- Buckingham, J.; Hodge, C.; Hardy, T. Submarine power and propulsion-application of technology to deliver customer benefit. In Proceedings of the UDT Europe, Glasgow, Scotland, UK, 26–28 June 2008. [Google Scholar]
- Spinner, N.S.; Field, C.R.; Hammond, M.H.; Williams, B.A.; Myers, K.M.; Lubrano, A.L.; Rose-Pehrsson, S.L.; Tuttle, S.G. Physical and chemical analysis of lithium-ion battery cell-to-cell failure events inside custom fire chamber. J. Power Sources 2015, 279 (Suppl. C), 713–721. [Google Scholar] [CrossRef]
- Lamb, J.; Corendorff, J.; Steele, L.A.M.; Spangler, S.W. Failure propagation in multi-cell lithium ion batteries. J. Power Sources 2015, 283 (Suppl. C), 517–523. [Google Scholar] [CrossRef] [Green Version]
- McDowall, J. A guide to lithium-ion battery safety. Battcon 2014, 1, 1–23. [Google Scholar]
- Ye, J.; Chen, H.; Wang, Q.; Huang, P.; Sun, J.; Lo, S. Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions. Appl. Energy 2016, 182 (Suppl. C), 464–474. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhao, F.; Wang, W.; Zhao, Y.; Liang, Z.; Yan, D. Overcharge failure investigation of lithium-ion batteries. Electrochim. Acta 2015, 178 (Suppl. C), 682–688. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Kato, K.; Lin, L.; Fukui, M. A thermal management system for lithium-ion battery in mobile systems. In Proceedings of the European Conference on Circuit Theory and Design (ECCTD), Dresden, Germany, 8–12 September 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–4. [Google Scholar]
- Li, Z.; Huang, J.; Liaw, B.Y.; Metzler, V.; Zhang, J. A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J. Power Sources 2014, 254 (Suppl. C), 168–182. [Google Scholar] [CrossRef]
- Lisbona, D.; Snee, T. A review of hazards associated with primary lithium and lithium-ion batteries. Process Saf. Environ. Prot. 2011, 89, 434–442. [Google Scholar] [CrossRef]
- Guo, L.S.; Wang, Z.R.; Wang, J.H.; Luo, Q.K.; Liu, J.J. Effects of the environmental temperature and heat dissipation condition on the thermal runaway of lithium ion batteries during the charge-discharge process. J. Loss Prev. Process Ind. 2017, 49, 953–960. [Google Scholar] [CrossRef]
- Yang, H.; Bang, H.; Amine, K.; Prakash, J. Investigations of the exothermic reactions of natural graphite anode for Li-ion batteries during thermal runaway. J. Electrochem. Soc. 2005, 152, A73–A79. [Google Scholar] [CrossRef]
- Lee, C.W.; Venkatachalapathy, R.; Prakash, J. A Novel Flame-Retardant Additive for Lithium Batteries. Electrochem. Solid-State Lett. 2000, 3, 63–65. [Google Scholar] [CrossRef]
- Lamb, J.; Orendorff, C.J. Evaluation of mechanical abuse techniques in lithium ion batteries. J. Power Sources 2014, 247 (Suppl. C), 189–196. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208 (Suppl. C), 210–224. [Google Scholar] [CrossRef]
- Ribière, P.; Grugeon, S.; Morcrette, M.; Boyanov, S.; Laruelle, S.; Marlair, G. Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry. Energy Environ. Sci. 2012, 5, 5271–5280. [Google Scholar] [CrossRef]
- Ping, P.; Wang, Q.; Huang, P.; Li, K.; Sun, J.; Kong, D.; Chen, C. Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test. J. Power Sources 2015, 285 (Suppl. C), 80–89. [Google Scholar] [CrossRef]
- MacNeil, D.; Lu, Z.; Chen, Z.; Dahn, J.R. A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. J. Power Sources 2002, 108, 8–14. [Google Scholar] [CrossRef]
- Zheng, W. GB/T 31485 Translated English of Chinese Standard, Safety Requirements and Test Methods for Traction Battery of Electric Vehicle; ICS: Amsterdam, The Netherlnads, 2015; p. 17. [Google Scholar]
- Wilkens, K.; Johnsen, B.; Bhargava, A.; Dragsted, A. Assessment of Existing Fire Protection Strategies and Recommendation for Future Work, in Project BLUE BATTERY, Part II; Danish Institute of Fire and security Technolog: Hvidovre, Denmark, 2017. [Google Scholar]
- Liu, K.; Liu, Y.; Lin, D.; Pei, A.; Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 2018, 4, eaas9820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Mao, B.; Stoliarov, S.I.; Sun, J. A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog. Energy Combust. Sci. 2019, 73, 95–131. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Liu, C.; He, X. ZrO2 coating of LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. Ionics 2009, 15, 493–496. [Google Scholar] [CrossRef]
- Kannan, A.M.; Manthiram, A. Surface/chemically modified LiMn2O4 cathodes for lithium-ion batteries. Electrochem. Solid-State Lett. 2002, 5, A167–A169. [Google Scholar] [CrossRef]
- Love, C.T.; Johannes, M.D.; Swider-Lyons, K. Thermal Stability of Delithiated Al-substituted Li (Ni1/3Co1/3Mn1/3) O2 Cathodes. ECS Trans. 2010, 25, 231. [Google Scholar] [CrossRef]
- Zhou, F.; Zhao, X.; Jiang, J.; Dahn, J. Advantages of Simultaneous Substitution of Co in Li [Ni1/3Mn1/3Co1/3] O2 by Ni and Al. Electrochem. Solid-State Lett. 2009, 12, A81–A83. [Google Scholar]
- Liu, S.; Dang, Z.; Liu, D.; Zhang, C.; Huang, T.; Yu, A. Comparative studies of zirconium doping and coating on LiNi0.6Co0.2Mn0.2O2 cathode material at elevated temperatures. J. Power Sources 2018, 396, 288–296. [Google Scholar]
- Yang, L.; Ren, F.; Feng, Q.; Xu, G.; Li, X.; Li, Y.; Zhao, E.; Ma, J.; Fan, S. Effect of Cu doping on the structural and electrochemical performance of LiNi1/3Co1/3Mn1/3O2 cathode materials. J. Electron. Mater. 2018, 47, 3996–4002. [Google Scholar] [CrossRef]
- Liu, H. Lithium Ion Battery and Positive Active Material Thereof. U.S. Patent Application No. 16/045,723, 31 January 2019. [Google Scholar]
- Chaoyi, Z.; Zhu’an, Y.; Wang, L.; Daixiang, Y.; Peng, P.; Xiang, Q.; Mei, M.; Li, L. Spherical or Spherical-Like Cathode Material for Lithium-Ion Battery and Lithium-Ion Battery. U.S. Patent Application No. 16/022,757, 17 January 2019. [Google Scholar]
- Chaoyi, Z.; Wang, L.; Zhu’an, Y.; Daixiang, Y.; Xiang, Q.; Mei, M.; Peng, P. Spherical or Spherical-Like Cathode Material for a Lithium Battery, a Battery and Preparation Method and Application Thereof. U.S. Patent No. 16/751,337, 21 May 2020. [Google Scholar]
- Jung, Y.S.; Cavanagh, A.S.; Riley, L.A.; Kang, S.H.; Dillon, A.C.; Groner, M.D.; George, S.M.; Lee, S.H. Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries. Adv. Mater. 2010, 22, 2172–2176. [Google Scholar] [CrossRef] [PubMed]
- Drews, A.R.; Anandan, V. Electrode design to improve li-ion battery safety. U.S. Patent Application No. 15/668,876, 7 February 2019. [Google Scholar]
- Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537. [Google Scholar] [CrossRef]
- Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194. [Google Scholar] [CrossRef]
- Cao, X.; Li, Y.; Li, X.; Zheng, J.; Gao, J.; Gao, Y.; Wu, X.; Zhao, Y.; Yang, Y. Novel phosphamide additive to improve thermal stability of solid electrolyte interphase on graphite anode in lithium-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 11494–11497. [Google Scholar] [CrossRef]
- Boukamp, B.; Lesh, G.; Huggins, R. All-solid lithium electrodes with mixed-conductor matrix. J. Electrochem. Soc. 1981, 128, 725. [Google Scholar] [CrossRef]
- Chan, C.K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X.F.; Huggins, R.A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31. [Google Scholar] [CrossRef]
- Belharouak, I.; Koenig, G.M., Jr.; Amine, K. Electrochemistry and safety of Li4Ti5O12 and graphite anodes paired with LiMn2O4 for hybrid electric vehicle Li-ion battery applications. J. Power Sources 2011, 196, 10344–10350. [Google Scholar] [CrossRef]
- Feng, X.; Sun, J.; Ouyang, M.; Wang, F.; He, X.; Lu, L.; Peng, H. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J. Power Sources 2015, 275, 261–273. [Google Scholar] [CrossRef]
- Park, C.-K. Nonaqueous Electrolyte for Lithium Battery Safety. U.S. Patent No. 10,038,220, 31 July 2018. [Google Scholar]
- Wang, Q.; Sun, J.; Chen, C. Effects of solvents and salt on the thermal stability of lithiated graphite used in lithium ion battery. J. Hazard. Mater. 2009, 167, 1209–1214. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Sun, J.; Chen, X.; Chu, G.; Chen, C. Effects of solvents and salt on the thermal stability of charged LiCoO2. Mater. Res. Bull. 2009, 44, 543–548. [Google Scholar] [CrossRef]
- Jiang, J.; Dahn, J. Effects of solvents and salts on the thermal stability of LiC6. Electrochim. Acta 2004, 49, 4599–4604. [Google Scholar] [CrossRef]
- Xu, W.; Deng, Z.; Bolomey, P. Stabilized Nonaqueous Electrolytes for Rechargeable Batteries. U.S. Patent No. 7,638,243, 29 December 2009. [Google Scholar]
- Guerfi, A.; Duchesne, S.; Kobayashi, Y.; Vijh, A.; Zaghib, K. LiFePO4 and graphite electrodes with ionic liquids based on bis (fluorosulfonyl)imide (FSI)− for Li-ion batteries. J. Power Sources 2008, 175, 866–873. [Google Scholar] [CrossRef]
- Prakash, J.; Lee, C.W.; Amine, K. Flame-retardant additive for Li-ion batteries. U.S. Patent No. 6,455,200, 24 September 2002. [Google Scholar]
- Yao, X.; Xie, S.; Chen, C.; Wang, Q.; Sun, J.; Li, Y.; Lu, S. Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries. J. Power Sources 2005, 144, 170–175. [Google Scholar] [CrossRef]
- Lee, H.-H.; Wang, Y.-Y.; Wan, C.-C.; Yang, M.-H.; Wu, H.-C.; Shieh, D.-T. The function of vinylene carbonate as a thermal additive to electrolyte in lithium batteries. J. Appl. Electrochem. 2005, 35, 615–623. [Google Scholar] [CrossRef]
- Xia, L.; Wang, D.; Yang, H.; Cao, Y.; Ai, X. An electrolyte additive for thermal shutdown protection of Li-ion batteries. Electrochem. Commun. 2012, 25, 98–100. [Google Scholar] [CrossRef]
- Tsujikawa, T.; Yabuta, K.; Matsushita, T.; Matsushima, T.; Hayashi, K.; Arakawa, M. Characteristics of lithium-ion battery with non-flammable electrolyte. J. Power Sources 2009, 189, 429–434. [Google Scholar] [CrossRef]
- Balakrishnan, P.; Ramesh, R.; Kumar, T.P. Safety mechanisms in lithium-ion batteries. J. Power Sources 2006, 155, 401–414. [Google Scholar] [CrossRef]
- Yeh, S.-F. Actuating Structure of Battery Safety Valve. U.S. Patent No. 10,103,371, 16 October 2018. [Google Scholar]
- Cherng, J.-Y.; Pin-Shiuan, L.; Cheng, T.-T. Lithium Battery with Exhaust Structure. U.S. Patent No. 10,121,998, 6 November 2018. [Google Scholar]
- Coman, P.T.; Rayman, S.; White, R.E. A lumped model of venting during thermal runaway in a cylindrical Lithium Cobalt Oxide lithium-ion cell. J. Power Sources 2016, 307, 56–62. [Google Scholar] [CrossRef]
- Finegan, D.P. X-Ray Imaging of Failure and Degradation Mechanisms of Lithium-Ion Batteries. Ph.D. Thesis, UCL (University College London), London, UK, 2016. [Google Scholar]
- Doughty, D.H.; Roth, E.P. A general discussion of Li ion battery safety. Electrochem. Soc. Interface 2012, 21, 37–44. [Google Scholar]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Wei, Z.; Meng, S.; Xiong, B.; Ji, D.; Tseng, K.J. Enhanced online model identification and state of charge estimation for lithium-ion battery with a FBCRLS based observer. Appl. Energy 2016, 181, 332–341. [Google Scholar] [CrossRef]
- Wei, Z.; Zhao, J.; Ji, D.; Tseng, K.J. A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model. Appl. Energy 2017, 204, 1264–1274. [Google Scholar] [CrossRef]
- Xiong, B.; Zhao, J.; Su, Y.; Wei, Z.; Skyllas-Kazacos, M. State of charge estimation of vanadium redox flow battery based on sliding mode observer and dynamic model including capacity fading factor. IEEE Trans. Sustain. Energy 2017, 8, 1658–1667. [Google Scholar] [CrossRef]
- Dong, G.; Yang, F.; Wei, Z.; Wei, J.; Tsui, K.-L. Data-driven battery health prognosis using adaptive Brownian motion model. IEEE Trans. Ind. Inform. 2019, 16, 4736–4746. [Google Scholar] [CrossRef]
- Liu, K.; Hu, X.; Wei, Z.; Li, Y.; Jiang, Y. Modified Gaussian process regression models for cyclic capacity prediction of lithium-ion batteries. IEEE Trans. Transp. Electrif. 2019, 5, 1225–1236. [Google Scholar] [CrossRef]
- Kim, T.; Adhikaree, A.; Pandey, R.; Kang, D.; Kim, M.; Oh, C.-Y.; Back, J. Outlier mining-based fault diagnosis for multiceli lithium-ion batteries using a low-priced microcontroller. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 3365–3369. [Google Scholar]
- Feng, X.; Weng, C.; Ouyang, M.; Sun, J. Online internal short circuit detection for a large format lithium ion battery. Appl. Energy 2016, 161, 168–180. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Dong, G.; Zhang, X.; Pou, J.; Quan, Z.; He, H. Noise-immune model identification and state of charge estimation for lithium-ion battery using bilinear parameterization. IEEE Trans. Ind. Electron. 2020, 1, 1–19. [Google Scholar] [CrossRef]
- Wei, Z.; Zhao, D.; He, H.; Cao, W.; Dong, G. A noise-tolerant model parameterization method for lithium-ion battery management system. Appl. Energy 2020, 268, 114932. [Google Scholar] [CrossRef]
- Zou, C.; Klintberg, A.; Wei, Z.; Fridholm, B.; Wik, T.; Egardt, B. Power capability prediction for lithium-ion batteries using economic nonlinear model predictive control. J. Power Sources 2018, 396, 580–589. [Google Scholar] [CrossRef]
- Yan, J.; Wang, Q.; Li, K.; Sun, J. Numerical study on the thermal performance of a composite board in battery thermal management system. Appl. Therm. Eng. 2016, 106, 131–140. [Google Scholar] [CrossRef]
- Ye, Y.; Saw, L.H.; Shi, Y.; Tay, A.A. Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging. Appl. Therm. Eng. 2015, 86, 281–291. [Google Scholar] [CrossRef]
- Zhai, H.; Cui, X. Thermal Management System. U.S. Patent Application No. 16/044,708, 31 January 2019. [Google Scholar]
- Coleman, B.; Ostanek, J.; Heinzel, J. Reducing cell-to-cell spacing for large-format lithium ion battery modules with aluminum or PCM heat sinks under failure conditions. Appl. Energy 2016, 180, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Khodadadi, J.; Pesaran, A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles. J. Power Sources 2013, 238, 301–312. [Google Scholar] [CrossRef]
- Chen, K.; Wang, S.; Song, M.; Chen, L. Structure optimization of parallel air-ccooled battery thermal management system. Int. J. Heat Mass Transf. 2017, 111, 943–952. [Google Scholar] [CrossRef]
- Mahamud, R.; Park, C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity. J. Power Sources 2011, 196, 5685–5696. [Google Scholar] [CrossRef]
- Yu, K.; Yang, X.; Cheng, Y.; Li, C. Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack. J. Power Sources 2014, 270, 193–200. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, X.; Li, G.; Hua, D. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements. Appl. Therm. Eng. 2015, 80, 55–65. [Google Scholar] [CrossRef]
- Zhao, J.; Rao, Z.; Li, Y. Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery. Energy Convers. Manag. 2015, 103, 157–165. [Google Scholar] [CrossRef]
- Karimi, G.; Dehghan, A. Thermal analysis of high-power lithium-ion battery packs using flow network approach. Int. J. Energy Res. 2014, 38, 1793–1811. [Google Scholar] [CrossRef]
- Kizilel, R.; Sabbah, R.; Selman, J.R.; Al-Hallaj, S. An alternative cooling system to enhance the safety of Li-ion battery packs. J. Power Sources 2009, 194, 1105–1112. [Google Scholar] [CrossRef]
- Al Hallaj, S.; Selman, J. A novel thermal management system for electric vehicle batteries using phase-change material. J. Electrochem. Soc. 2000, 147, 3231–3236. [Google Scholar] [CrossRef]
- Bustamante, J.G.; Sole, J.D. Internal Battery Cell Cooling with Heat Pipe. U.S. Patent Application No. 15/132,668, 29 January 2019. [Google Scholar]
- Weng, Y.-C.; Cho, H.-P.; Chang, C.-C.; Chen, S.-L. Heat pipe with PCM for electronic cooling. Appl. Energy 2011, 88, 1825–1833. [Google Scholar] [CrossRef]
- Yu, M.G.; Wang, S.H.; Hu, X.F. Heat transfer capacity of composite cooling system for automobile lithium-ion battery with heat pipe and phase change materials. Adv. Mater. Res. 2014, 941, 2469–2473. [Google Scholar] [CrossRef]
- National Fire Protection Association. NFPA 13, Standard for the Installation of Sprinkler Systems; National Fire Protection Association: Quincy, MS, USA, 2002. [Google Scholar]
- Liu, Z.; Kim, A.K.; Carpenter, D. A study of portable water mist fire extinguishers used for extinguishment of multiple fire types. Fire Saf. J. 2007, 42, 25–42. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, N.; Sugawa, O.; Suwa, T.; Ogawa, Y.; Hiramatsu, M.; Hino, T.; Miyamoto, H.; Okamoto, K.; Honma, M. Comparison of fire behaviors of an electric-battery-powered vehicle and gasoline-powered vehicle in a real-scale fire test. In Proceedings of the 2nd International Conference on Fires in Vehicles-FIVE, Chicago, IL, USA, 27–28 September 2012. [Google Scholar]
- Ouyang, D.; Chen, M.; Huang, Q.; Weng, J.; Wang, Z.; Wang, J. A Review on the Thermal Hazards of the Lithium-Ion Battery and the Corresponding Countermeasures. Appl. Sci. 2019, 9, 2483. [Google Scholar] [CrossRef] [Green Version]
- Reif, R.H.; Liffers, M.; Forrester, N.; Peal, K. Lithium Battery Safety. Prof. Safety 2010, 55, 32. [Google Scholar]
- Farrington, M.D. Safety of lithium batteries in transportation. J. Power Sources 2001, 96, 260–265. [Google Scholar] [CrossRef]
- Larsson, F. Lithium-Ion Battery Safety-Assessment by Abuse Testing, Fluoride Gas Emissions And Fire Propagation. Ph.D. Thesis, Chalmers University of Technology, Göteborg, Sweden, 2017. [Google Scholar]
- Wang, Q.; Li, K.; Wang, Y.; Chen, H.; Duan, Q.; Sun, J. The efficiency of dodecafluoro-2-methylpentan-3-one on suppressing the lithium ion battery fire. J. Electrochem. Energy Convers. Storage 2018, 15(4), 41–51. [Google Scholar] [CrossRef] [Green Version]
- Beitland, S.; Stokland, O.; Skaug, V.; Skogstad, A.; Klingenberg, O. Inhalation of fire extinguisher powder. Eur. J. Trauma 2006, 32, 286–291. [Google Scholar] [CrossRef]
- Jiang, Z.; Chow, W.; Li, S. Review on additives for new clean fire suppressants. Environ. Eng. Sci. 2007, 24, 663–674. [Google Scholar] [CrossRef]
- Gann, R.G.; Burgess, S.R.; Whisner, K.C.; Reneke, P.A. Preface to the Cumulative Proceedings of the First 14 Halon Options Technical Working Conferences; NIST Pubs: Gaithersburg, MD, USA, 20 May 2017. [Google Scholar]
- Benson, C.; Fernando-Cerezo, G.; Holborn, P.; Mba, D. Fire suppression systems in aircraft: Their past, present & future. Fire Investig. 2016, 1, 34–41. [Google Scholar]
- Summer, S.M. Flammability Assessment of Lithium-Ion and Lithium-Ion Polymer Battery Cells Designed for Aircraft Power Usage; US Department of Transportation, Federal Aviation Administration: Washington, DC, USA, 2010.
- Ditch, B.; de Vries, J. Flammability Characterization of Lithium-ion Batteries in Bulk Storage; FM Global: Norwood, MA, USA, 20 March 2013. [Google Scholar]
- Webster, H. Flammability Assessment of Bulk-Packed, Rechargeable Lithium-Ion Cells in Transport Category Aircraft; Office of Aviation Research, Federal Aviation Administration: Washington, DC, USA, 2006. [Google Scholar]
- Rao, H.; Huang, Z.; Zhang, H.; Xiao, S. Study of fire tests and fire safety measures on lithiumion battery used on ships. In Proceedings of the 2015 International Conference on Transportation Information and Safety (ICTIS), Wuhan, China, 25–28 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 865–870. [Google Scholar]
- Wang, Q.; Shao, G.; Duan, Q.; Chen, M.; Li, Y.; Wu, K.; Liu, B.; Peng, P.; Sun, J. The efficiency of heptafluoropropane fire extinguishing agent on suppressing the lithium titanate battery fire. Fire Technol. 2016, 52, 387–396. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, Q.; Xu, J.; Chen, H.; Lu, W.; Wang, Q. Experimental study on the efficiency of dodecafluoro-2-methylpentan-3-one on suppressing lithium-ion battery fires. Rsc Adv. 2018, 8, 42223–42232. [Google Scholar] [CrossRef] [Green Version]
- Hill, D. Considerations for Energy Storage Systems (ESS) Fire Safety; DET NORSKE VERITAS (U.S.A.); INC: Dublin, OH, USA, 2017. [Google Scholar]
- Egelhaaf, M.; Kress, D.; Wolpert, D.; Lange, T.; Justen, R.; Wilstermann, H. Fire Fighting of Li-Ion Traction Batteries. Sae Int. J. Altern. Powertrains 2013, 2, 37–48. [Google Scholar] [CrossRef]
- Maloney, T. Extinguishment of Lithium-Ion and Lithium-Metal Battery Fires; US Federal Aviation Administration: Washington, DC, USA, 2014; pp. 46–51. [Google Scholar]
- Larsson, F.; Andersson, P.; Blomqvist, P.; Lorén, A.; Mellander, B.-E. Characteristics of lithium-ion batteries during fire tests. J. Power Sources 2014, 271, 414–420. [Google Scholar] [CrossRef]
- Andersson, P.; Arvidson, M.; Evegren, F.; Jandali, M.; Larsson, F.; Rosengren, M. Lion Fire: Extinguishment and mitigation of fires in Li-ion batteries at sea. DiVA 2018, 49, 49. [Google Scholar]
- Zhu, M.-X.; Zhu, S.-B.; Gong, J.-H.; Zhou, Z. Experimental Study on Fire and Explosion Characteristics of Power Lithium Batteries with Surfactant Water Mist. Procedia Eng. 2018, 211, 1083–1090. [Google Scholar] [CrossRef]
- Zhang, Q.; Cao, W.; Bai, W. Experimental study on inhibition effect of water mist on thermal runaway of lithium ion batteries. Fire Saf. Sci. 2017, 4, 8. [Google Scholar]
- Long, R.T.; Blum, A.F.; Bress, T.J.; Cotts, B.R. Best Practices for Emergency Response to Incidents Involving Electric Vehicles Battery Hazards: A Report on Full-Scale Testing Results; National Fire Protection Research Foundation: Quincy, MA, USA, 2013. [Google Scholar]
- Luo, W.-T.; Zhu, S.-B.; Gong, J.-H.; Zhou, Z. Research and development of fire extinguishing technology for power lithium batteries. Procedia Eng. 2018, 211, 531–537. [Google Scholar] [CrossRef]
- Li, Y.; Yu, D.; Zhang, S.; Hu, Q.; Liu, X.; Wang, J. On the fire extinguishing tests of typical lithium ion battery. J. Saf. Environ. 2015, 15, 120–125. [Google Scholar]
- Lefebvre, A.H.; McDonell, V.G. Atomization and Sprays; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Mawhinney, J.R.; Back, G.G., III. Water mist fire suppression systems. In SFPE Handbook of Fire Protection Engineering; Springer: New York, NY, USA, 2016; pp. 1587–1645. [Google Scholar]
- National Fire Protection Association. NFPA 750 Standard for Water Mist Fire Suppression Systems; NFPA: Quincy, MA, USA, 2010. [Google Scholar]
- Braidech, M.; Neale, J.; Matson, A.; Dufour, R. The Mechanism of Extinguishment of Fire By Finely Divided Water; Underwriters Laboratories Inc. for the National Board of Fire Underwriters; National Board of Fire Underwriters: New York, NY, USA, 1955; p. 73. [Google Scholar]
- Rasbash, D.; Rogowski, Z.; Stark, G. Mechanisms of extinction of liquid fires with water sprays. Combust. Flame 1960, 4, 223–234. [Google Scholar] [CrossRef]
- Baumgarten, C. Mixture Formation in Internal Combustion Engines; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- Mawhinney, J.; Dlugogorski, B.; Kim, A. A closer look at the fire extinguishing properties of water mist. Fire Saf. Sci. 1994, 4, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Mahmud, H. Simulation of the Suppression of Fires Using Water Mists. Ph.D. Thesis, Victoria University, Melbourne, Australia, 2016. [Google Scholar]
- Back, G.G., III; Beyler, C.L.; Hansen, R. A quasi-steady-state model for predicting fire suppression in spaces protected by water mist systems. Fire Saf. J. 2000, 35, 327–362. [Google Scholar] [CrossRef]
- Dembele, S.; Wen, J.; Sacadura, J.-F. Experimental study of water sprays for the attenuation of fire thermal radiation. J. Heat Transf. 2001, 123, 534–543. [Google Scholar] [CrossRef]
- Liu, Z.; Kim, A.; Su, J. Improvement of efficacy of water mist in fire suppression by cycling discharges. Second International Conference on Fire Research and Engineering, Gaithersburg, MD, USA, 3–8 August 1997; pp. 275–281. [Google Scholar]
- Liu, Z.; Kim, A.K. A review of water mist fire suppression systems—fundamental studies. J. Fire Prot. Eng. 1999, 10, 32–50. [Google Scholar]
- British Standards Institution. BS 8489 Fixed Fire Protection Systems. Industrial and Commercial Watermist Systems. Code of Practice for Design and Installation; British Standards Institution: London, UK, 2016. [Google Scholar]
- National Standards Authority of Ireland. SR CEN/TS 14972Fixed Firefighting Systems—Watermist Systems—Design and Installation; National Standards Authority of Ireland: Dublin, Ireland, 2011. [Google Scholar]
Lifetime Years (Cycles) | Power Density Wkg−1 (kWm−3) | Energy Density Whkg−1 (kWhm−3) | Discharge Time | Recharge Time | Response Time | Operating Temperature (°C) | Self-Discharge (%/day) | Critical Voltage/Cell (V) | |
---|---|---|---|---|---|---|---|---|---|
Lithium-ion battery | 8–15 (500–6000) | 230–340 (1300–10000) | 100–250 (250–620) | min–h | min–h | 20 ms–s | −10 to 50 | 0.1–0.3 | 3 |
Lead-acid battery | 3–15 (2000) | 75–300 (90–700) | 30–50 (75) | min–h | 8–16 h | 5–10 ms | −10 to 40 | 0.1–0.3 | 1.75 |
Advanced lead-acid battery | 3–15 (3000) | 75–300 (90–700) | 30–50 (75) | min–h | 8–16 h | 5 ms | −10 to 40 | 0.1–0.3 | 2 |
Nickel-cadmium battery | 15–20 (2500) | 150–300 (75–700) | 45–80 (<200) | s–h | 1 h | ms | −40 to 45 | 0.2–0.6 | 1 |
Zinc bromide flow battery | 5–10 (300–1500) | 50–150 (1–25) | 60–80 (20–35) | s–10 h | 4 h | <1 ms | 10 to 45 | 0–1 | 0.17–0.3 |
Vanadium redox flow battery | 10–20 (13–103) | NA (0.5–2) | 75 (20–35) | s–10h | min | <1 ms | 0 to 40 | 0–10 | 0.7–0.8 |
No. | Date | Location | Incident Description | Possible Cause |
---|---|---|---|---|
1 | March 2019 | Brabant, Netherlands | A HEV (BMW i8 plug-in hybrid) started to smoke in a showroom | Unknown. |
2 | January 2019 | Adelaide, Australia | Electric road bike exploded and caught fire | Internal short circuit |
3 | January 2019 | Florida, USA | An EV (Tesla Model S) caught fire | Crash. |
4 | June 2018 | Vancouver, Canada | e-cigarette caused fire in the baggage compartment of a WestJet flight, making an emergency landing | Unknown. |
5 | August 2017 | California, USA | An EV (Tesla Model X) caught fire after crashing into a garage | Crash deformed the battery modules initiating short circuit, outgassing and fire. |
6 | September 2016 | Worldwide | Samsung recalled more than 2.5 million Galaxy Note 7 phones after 35 fire cases | Manufacturing defect in Samsung’s batteries causing shorts between internal positive and negative poles. |
7 | August 2016 | Paris, France | An EV (Tesla Model S) car caught fire during a promotional tour | Unknown. |
8 | July 2106 | Rome, Italy | An EV police car caught fire. | Unknown. |
9 | July 2106 | Nanjing, China | The battery pack of an EV (bus) caught fire after heavy rain. | Water immersion causing short circuit. |
10 | June 2106 | Beijing, China | An iEV5 caught fire. | Overheating by loose wire connection. |
11 | June 2106 | Shenzhen, China | An EV (Wuzhou Dragon) bus caught fire. | A short circuit created by wire deterioration. |
12 | January 2016 | Gjerstad, Norway | An EV (Tesla Model S) car caught fire during fast charging at a fastcharger Station. | Short circuit while charging. |
13 | September 2015 | Hangzhou, China | The battery pack of an HEV bus caught fire. | Unknown. |
14 | April 2015 | Shenzhen, China | An EV (Wuzhou Dragon) bus caught fire while charging in a carpark. | The Battery Monitoring System failed to stop charging, the battery pack was overcharged. |
15 | October 2013 | Tennessee, USA | An EV (Tesla Model S) car collided with metal objects at highway and caught fire. | Short circuit induced by piercing and deformation of the battery pack after colliding with the metal objects. |
18 | January 2013 | Takamatsu, Japan | The battery pack caught fire in a Boeing 787 traveling from Yamaguchi-Ube to Tokyo. | Internal short circuit. |
19 | January 2013 | Boston, USA | The battery pack caught fire and spread the smoke in the entire cabin of a Boeing 787. | Internal short circuit. |
20 | May 2012 | Shenzhen, China | An EV (BYD E6 taxi) car caught fire after a rear-end collision and hitting a tree. | High-speed accident damaged the high voltage circuit. Shorts occurred in the broken circuit. |
21 | July 2011 | Shanghai, China | An EV bus caught fire | Overheated LiFePO4 batteries |
22 | May 2011 | Burlington, USA | An EV (Chevy Volt) car caught fire three weeks after a side-pole impact test and damaged the neighbouring cars. | The pole impact broke the cooling system and the battery module. Coolant conducted an external short circuit and ignited combustible venting gas. |
23 | April 2011 | Hangzhou, China | An EV (taxi) car caught fire. | Faulty battery. |
24 | September 2010 | Dubai, UAE | A Boeing B747-400F cargo plane caught fire | Overheated batteries. |
25 | January 2010 | Urumqi, China | Two EVs (buses) caught fire. | Overheated LiFePO4 batteries. |
26 | July 2009 | Shenzhen, China | Cargo plane caught fire before flying to the USA. | Spontaneous combustion of LiBs. |
27 | June 2008 | Tokyo, Japan | A HEV (Honda) caught fire. | Overheated LiFePO4 batteries. |
28 | June 2008 | Columbia, USA | The battery pack of an adjusted HEV (Prius) car caught fire during driving. | Loose connection causing battery to overheat. |
29 | 2006–now | Worldwide | Thousands of mobile phone fires and/or explosions | Internal shorts, manufacturer’s defect, overheating, etc. |
Company | Country | Date | Battery | Chemistry | Water | CO2 | Foam | Chemical/Dry Powder | Nitrogen | Sand | Halon* | Whatever Suitable |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Yuka energy | China | 2011 | Pack | LCO | × | × | × | × | ||||
Makita | USA | 2013 | Pack | NCO | × | × | × | |||||
Enertech | Korea | 2017 | Pack | NMC | × | × | × | |||||
Samsung | Korea | 2011 | Cell | NMC | × | × | ||||||
Samsung | Korea | 2016 | Cell | NMO | × | × | × | × | × | |||
Saft | France | 2009 | Pack | LCO | × | × | × | × | ||||
Bipower | USA | 2017 | Pack | LCO | × | × | × | |||||
LG Chem | Korea | 2013 | Cell | NMC | × | |||||||
Motorola | USA | 2017 | Pack | LCO | × | × | × | × | ||||
Ideal | USA | 2010 | Cell | LCO | × | × | × | |||||
SDPT | China | 2016 | LCO | × | × | |||||||
Bren-Tronics | USA | 2013 | Pack | LCO | × | × | × | × | ||||
Advance Energy | USA | 2011 | LCO | × | ||||||||
Leo Energy | Singapore | 2014 | NMC | × | × | |||||||
IDX | Japan | 2016 | Pack | LMO | × | × | × | × | × | |||
Panasonic | USA | 2015 | NMC | × | × | × | × | |||||
Total | 12 | 10 | 9 | 12 | 2 | 2 | 1 | 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghiji, M.; Novozhilov, V.; Moinuddin, K.; Joseph, P.; Burch, I.; Suendermann, B.; Gamble, G. A Review of Lithium-Ion Battery Fire Suppression. Energies 2020, 13, 5117. https://doi.org/10.3390/en13195117
Ghiji M, Novozhilov V, Moinuddin K, Joseph P, Burch I, Suendermann B, Gamble G. A Review of Lithium-Ion Battery Fire Suppression. Energies. 2020; 13(19):5117. https://doi.org/10.3390/en13195117
Chicago/Turabian StyleGhiji, Mohammadmahdi, Vasily Novozhilov, Khalid Moinuddin, Paul Joseph, Ian Burch, Brigitta Suendermann, and Grant Gamble. 2020. "A Review of Lithium-Ion Battery Fire Suppression" Energies 13, no. 19: 5117. https://doi.org/10.3390/en13195117
APA StyleGhiji, M., Novozhilov, V., Moinuddin, K., Joseph, P., Burch, I., Suendermann, B., & Gamble, G. (2020). A Review of Lithium-Ion Battery Fire Suppression. Energies, 13(19), 5117. https://doi.org/10.3390/en13195117