Sizing and Control Algorithms of a Hybrid Energy Storage System Based on Fuel Cells
Abstract
:1. Introduction
2. System Elements Selection
- : the mass of the supercapacitor.
- : the mass of the fuel cell.
- : the mass of the Li-ion battery.
3. Control Algorithms
4. Mathematical Model
5. Physical Realization of the Mathematical Model
- α = 7.934 (7.038, 8.831),
- β = 1.152 (1.115, 1.189).
- α = 52.1 (37.56, 66.64),
- β = 1.684 (1.523, 1.845).
- α = 173.7 (169.6, 177.8),
- β = 0.9565 (0.9042, 1.009).
- P_SC = 23.85 (W),
- P_FC = 5.68 (W).
6. Measurements and Simulation
7. Conclusions
Funding
Conflicts of Interest
References
- Greenblatt, J.B.; Saxena, S. Autonomous taxis could greatly reduce greenhouse-gas emissions of US light-duty vehicles. Nat. Clim. Chang. 2015, 5, 860–863. [Google Scholar] [CrossRef]
- Cheah, L.; Evans, C.; Groode, T.; Heywood, J.; Kasseris, E.; Kromer, M.; Weiss, M. Reducing the fuel use and greenhouse gas emissions of the US vehicle fleet. Energy Policy 2008, 36, 2754–2760. [Google Scholar] [CrossRef]
- Brown, M.A.; Levine, M.D.; Romm, J.P.; Rosenfeld, A.H.; Koomey, J.G. Engineering-economic studies of energy technologies to reduce greenhouse gas emissions: Opportunities and challenges. Ann. Rev. Energy Environ. 1998, 23, 287–385. [Google Scholar] [CrossRef]
- Toy, J. Delivery by drone: An evaluation of unmanned aerial vehicle technology in reducing CO2 emissions in the delivery service industry. Transp. Res. Part D Transp. Environ. 2018, 61, 58–67. [Google Scholar] [CrossRef]
- Wang, A.; Stogios, C.; Gai, Y.; Vaughan, J.; Ozonder, G.; Lee, S.; Posen, I.D.; Miller, E.J.; Hatzopoulou, M. Automated, electric, or both? Investigating the effects of transportation and technology scenarios on metropolitan greenhouse gas emission. Sustain. Cities Soc. 2018, 40, 524–533. [Google Scholar] [CrossRef]
- Aschilean, I.; Rasoi, G.; Raboaca, M.S.; Filote, C.; Culcer, M. Design and Concept of an Energy System Based on Renewable Sources for Greenhouse Sustainable Agriculture. Energies 2018, 11, 1201. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, A.W.; Barrett, S.R.H.; Doyme, K.; Dray, L.M.; Grandt, A.R.; Self, R.; O’Sullivan, A.; Synodinos, A.P.; Torija, A.J. Technological, economic and environmental prospects of all-electric aircraft. Nat. Energy 2019, 4, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Perera, F. Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. Int. J. Environ. Res. Public Health 2017, 15, 16. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Tian, S.; Liu, D.; Fang, Y.; Zhu, X.; Gao, M.; Gao, J.; Michalski, G.; Wang, Y. Isotopic evidence for enhanced fossil fuel sources of aerosol ammonium in the urban atmosphere. Environ Pollut. 2018, 238, 942–947. [Google Scholar] [CrossRef]
- Parry, I. Fossil-fuel subsides assessed. Nature 2018, 554, 175–176. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; El-Haddad, I.; Huang, R.; Ho, K.; Cao, J.; Han, Y.; Zotter, P.; Bozzetti, C.; Daellenbach, K.R.; Slowik, J.G.; et al. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons Ltd: Chichester, UK, 2018; Volume 18, pp. 4005–4017. [Google Scholar] [CrossRef] [Green Version]
- Martins, F.; Felgueiras, C.; Smitkova, M. Fossil fuel energy consumption in European countries. Energy Proced. 2018, 153, 107–111. [Google Scholar] [CrossRef]
- Hartfoot, M.B.J.; Tittensor, D.P.; Knight, S.; Arnell, A.P.; Brooks, S.B.S.; Butchart, S.H.M.; Hutton, J.; Johnes, M.I. Present and future biodiversity risks from fossil fuel exploitation. Conserv. Lett. 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Yu, B.; Wang, L. Costs and benefits of renewable energy development in China’s power industry. Renew. Energy 2019, 131, 700–712. [Google Scholar] [CrossRef]
- Almehizia, A.A.; Al-Masri, H.M.K.; Ehsani, M. Integration of Renewable Energy Sources by Load Shifting and Utilizing Value Storage. IEEE Explor 2019, 10. [Google Scholar] [CrossRef]
- Kuik, O.; Branger, F.; Quirion, P. Competitive advantage in the renewable energy industry: Evidence from a gravity model. Renew. Energy 2019, 131, 472–481. [Google Scholar] [CrossRef]
- Kaberger, T. Progress of renewable electricity replacing fossil fuels. Glob. Energy Interconnect. 2018, 1, 48–52. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Fan, Y. Techno-Economic Challenges of Fuel Cell Commercialization. Engineering 2018, 4, 352–360. [Google Scholar] [CrossRef]
- Ali, R.; Pasha, A. Fuel Cells-A signpost to future. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Kocierz, Beskid Mały, Poland, 16–19 September 2019. [Google Scholar]
- Kheirandish, A.; Akbari, E.; Nilashi, M.; Dahari, M. Using ANFIS technique for PEM fuel cell electric bicycle prediction model. Int. J. Environ. Sci. Technol. 2019, 16, 7319–7326. [Google Scholar] [CrossRef]
- Manoharan, Y.; Hosseini, S.E.; Butler, B.; Alzhahrani, H.; Fou, B.T.; Ashuri, T.; Krohn, J. Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect. Appl. Sci. 2019, 9, 2296. [Google Scholar] [CrossRef] [Green Version]
- Reddy, B.M.; Samuel, P.; Reddy, N.S.M. Government Policies Help Promote Clean Transportation in India: Proton-Exchange Membrane Fuel Cells for Vehicles. IEEE Electr. Mag. 2018, 6, 26–36. [Google Scholar] [CrossRef]
- Nawotny, J.; Dodson, J.; Fiechter, S.; Gur, T.M.; Kennedy, B.; Macyk, W.; Bak, T.; Sigmund, W.; Yamawaki, M.; Rahman, K.A. Towards global sustainability: Education on environmentally clean energy technologies. Renew. Sustain. Energy Rev. 2018, 81, 2541–2551. [Google Scholar] [CrossRef]
- Gonzales, E.L.; Cuesta, J.S.; Fernandez, F.J.V.; Lierena, F.I.; Carlini, M.A.R.; Bordons, C.; Hernandez, E.; Elfes, A. Experimental evaluation of a passive fuel cell/battery hybrid power system for an unmanned ground vehicle. Int. J. Hydrogen Energy 2019, 44, 12772–12782. [Google Scholar] [CrossRef]
- Wang, Y.; Moura, S.J.; Advani, S.G.; Prasad, A.K. Power management system for a fuel cell/battery hybrid vehicle incorporating fuel cell and battery degradation. Int. J. Hydrogen Energy 2019, 44, 8479–8492. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Z.; Chen, Z. Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine. Appl. Energy 2019, 254, 113707. [Google Scholar] [CrossRef]
- Fathabadi, H. Combining a proton exchange membrane fuel cell (PEMFC) stack with a Li-ion battery to supply the power needs of a hybrid electric vehicle. Renew. Energy 2019, 130, 714–724. [Google Scholar] [CrossRef]
- Thunthong, P.; Rael, S.; Davat, B. Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications. J. Power Sour. 2009, 193, 376–385. [Google Scholar] [CrossRef]
- Dyer, C.K. Fuel cells for portable aplications. J. Power Sour. 2002, 106, 31–34. [Google Scholar] [CrossRef]
- Patil, A.S.; Dubois, T.G.; Sifer, N.; Bostick, E.; Gardner, K. Portable fuel cell systems for America’s army: Technology transition to the field. J. Power Sour. 2004, 136, 220–225. [Google Scholar] [CrossRef]
- Younghyun, K.; Donghwa, S.; Jueun, S.; Naehyuck, C. System integration of a portable direct methanol fuel cell and a battery hybrid. Int. J. Hydrogen Energy 2010, 35, 5621–5637. [Google Scholar] [CrossRef]
- Moore, J.M.; Lakeman, J.B.; Mepsted, G.O. Development of a PEM fuel cell powered portable field generator for the dismounted soldie. J. Powersour. 2002, 106, 16–20. [Google Scholar] [CrossRef]
- Meyers, J.P.; Maynard, H.L. Design considerations for miniaturized PEM fuel cells. J. Power Sour. 2002, 109, 15. [Google Scholar] [CrossRef]
- Davis, M.W.; Lototskyy, M.; Malinowski, M.; van Schalkwyk, D.; Parsons, A.; Pasupathi, S.; Swanepoel, D.; van Niekerk, T. Metal hydride hydrogen storage tank for light fuel cell vehicle. Int. J. Hydrogen Energy 2019, 44, 29263–29272. [Google Scholar] [CrossRef]
- Lei, T.; Yang, Z.; Lin, Z.; Zhang, X. State of art on energy management strategy for hybrid-powered unmanned aerial vehicle. Chin. J. Aeronaut. 2019, 32, 1488–1503. [Google Scholar] [CrossRef]
- Weyers, C.; Bocklish, T. Simulation-based investigation of energy management concepts for fuel cell—battery—hybrid energy storage systems in mobile applications. Energy Proced. 2018, 155, 295–308. [Google Scholar] [CrossRef]
- Raga, C.; Barrado, A.; Lazaro, A.; Martin-Lozano, A.; Quesada, I.; Zumel, P. Influence of the Main Design Factors on the Optimal Fuel Cell-Based Powertrain Sizing. Energies 2018, 11, 3060. [Google Scholar] [CrossRef] [Green Version]
- You, Z.; Wang, L.; Han, Y.; Zare, F. System Design and Energy Management for a Fuel Cell/Battery Hybrid Forklift. Energies 2018, 11, 3440. [Google Scholar] [CrossRef] [Green Version]
- Snoussi, J.; Ben Elghali, S.; Benbouzid, M.; Mimouni, M.F. Auto-Adaptive Filtering-Based Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles. Energies 2018, 11, 2118. [Google Scholar] [CrossRef] [Green Version]
- Adamczyk, A. A concept of minimizing an electric power supply system for portable gear and amrs. Sci. J. Pol. Nav. Acad. 2016, 206. [Google Scholar] [CrossRef]
- Adamczyk, A.; Grzeczka, G. Hybrid power supply system model for offshore floating platforms. J. Mar. Eng. Technol. 2018, 16, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Ehrlich, G.M. Handbook of Batteries, 3rd ed.; Chapter 1; The McGaw-Hill Companies: New York, NY, USA, 2002. [Google Scholar]
Response Time | High Temperature Performance | Low Temperature Performance | Energy Density | Power Density | Work Cycles | Single Cell Voltage | Control System Requirements | |
---|---|---|---|---|---|---|---|---|
Li-ion battery | ++ | + | ++ | ++ | ++ | ++ | +++ | + |
Supercapacitor | +++ | +++ | +++ | + | +++ | +++ | + | + |
PEM Fuel cell | + | ++ | + | +++ | ++ | ++ | ++ | ++ |
State | Short-Time Power Dynamics | Residual Short-Time Energy | Shift to the State |
---|---|---|---|
1 (SC) | No shift | ||
1 (SC) | No shift | ||
1 (SC) | No shift | ||
1 (SC) | for | No shift | |
1 (SC) | dla | 2 (FC) | |
1 (SC) | dla | 3 (Li-ion) | |
2 (FC) | 1 (SC) | ||
2 (FC) | No shift | ||
2 (FC) | No shift | ||
2 (FC) | 3 (Li-ion) | ||
3 (Li-ion) | for | 1 (SC) | |
3 (Li-ion) | for | 2 (FC) | |
3 (Li-ion) | No shift | ||
3 (Li-ion) | No shift | ||
3 (Li-ion) | No shift |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamczyk, A. Sizing and Control Algorithms of a Hybrid Energy Storage System Based on Fuel Cells. Energies 2020, 13, 5147. https://doi.org/10.3390/en13195147
Adamczyk A. Sizing and Control Algorithms of a Hybrid Energy Storage System Based on Fuel Cells. Energies. 2020; 13(19):5147. https://doi.org/10.3390/en13195147
Chicago/Turabian StyleAdamczyk, Arkadiusz. 2020. "Sizing and Control Algorithms of a Hybrid Energy Storage System Based on Fuel Cells" Energies 13, no. 19: 5147. https://doi.org/10.3390/en13195147
APA StyleAdamczyk, A. (2020). Sizing and Control Algorithms of a Hybrid Energy Storage System Based on Fuel Cells. Energies, 13(19), 5147. https://doi.org/10.3390/en13195147