Experimental Methods for Investigation of Drilling Fluid Displacement in Irregular Annuli
Abstract
:1. Introduction
2. Experimental Design
2.1. General Fluid Design
- (1)
- viscous properties reflecting drilling fluid, spacer and cement slurry viscosities
- (2)
- viscosity contrast reflecting those of field applications
- (3)
- density contrast to simulate density differences in field operations
- (4)
- electrical conductivity contrast to be able to measure the displacement efficiency
- (5)
- optical transparency to be able to measure the displacement efficiency
- (6)
- low toxicity to ensure no harm for involved personnel and reduce cost of laboratory waste handling
- (7)
- low cost
2.2. Test Rig
2.2.1. Overview
2.2.2. Instrumentation
- (1)
- detect the arrival of the displacing fluid at a particular probe location at the corresponding time where the signal Vr changes from low to high
- (2)
- assess qualitatively the degree of mixing of the two fluids at the probe location by measuring the duration of the transition from low to high signal level
- (3)
- measure and quantify the concentration of displacing fluid at the probe location
- Flow rate (FM)
- Differential pressure (DP1, DP2, DP3)
- Inner pipe rotation speed (RPM)
- Mixed fluid conductivity downstream test section (probe C0)
- Mixed fluid temperature downstream test section (probe T0)
- Tank temperature of displacing fluid (probe T1)
- Local conductivity at stations A, B, C and D (probes Aj, Bj, Cj, Dj with j = 1, 3, 5, 6, 7, 8)
2.3. Test Procedures
- (1)
- Prepare data logging program:
- (a)
- check/set appropriate limit values for conductivity probe C0 (see Figure 8). These values control the outlet valves.
- (b)
- check/set correct flow rate value (0.00436 m3/s, corresponding to 0.5 m/s in the regular size annulus)).
- (2)
- Start data logging
- (3)
- Start circulation of fluids with displaced fluid circulating in the test section and displacing fluid circulating in the bypass line.
- (4)
- Take sample of displaced fluid.
- (5)
- Flush DP cells with displaced fluid.
- (6)
- Stop circulation of displaced fluid for zero DP measurements.
- (7)
- Restart circulation of displaced fluid.
- (8)
- Turn on video lights and start video recording
- (9)
- Start displacement experiment by switching to displacing fluid using computer-controlled valve
- (10)
- Switch to automatic outlet valve control mode in logging program
- (11)
- Stop video recordings when outlet valves have switched to position 3 (displacing fluid)
- (12)
- Continue circulation with displacing fluid for at least one minute after stopping experiment.
- (13)
- Take sample of displacing fluid
- (14)
- Stop circulation
3. Data evaluation and Processing
3.1. Pressure Drop Measurements
3.2. Pump Rate Variability
3.3. Conductivity Probe Signals
- (1)
- The time at which signal value starts increasing indicates when displacing fluid arrives at the different locations (arrival time).
- (2)
- The difference in arrival time of signals at different axial positions (stations) but at the same azimuth position can be used to estimate the axial flow velocity of the interface.
- (3)
- The steepness of the curves indicates the degree of mixing of displaced and displacing fluid at the location of the probe. A steep transition indicates a well-defined interface with little mixing. A very gradual interface could be due to mixing of the two fluids, but it could also be caused by an interface which is slanted with respect to the axial flow direction.
- (4)
- Similarity in shape of probe signals at subsequent axial stations (A, B, C) in the regular section indicates that the displacement front propagates without deformation like a travelling wave. In practice there will always be some distortion, which can be inferred from the differences in shape among the probes.
3.4. Calculation of Displacement Efficiency
3.5. Reconstruction of Displacement Front Velocity
4. Sample Measurements
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Symbol | Description | (Default) value |
Di | Inner diameter of annulus (outer diameter of inner pipe) | 0.127 m (5”) |
Do | Inner diameter of gauge outer pipe | 0.1651 m (6.5”) |
Dwo | Inner diameter of washout section | 0.2794 m (11”) |
G | Electrical conductance between electrodes of a probe | |
Gmax | Conductance in high-conductivity fluid | |
Gmin | Conductance in low-conductivity fluid | |
K | Gain factor of wave amplifier | |
Lp | Length of probe electrodes (length into annulus) | 5 mm |
Ls | Length of each pipe section | 1.92 m |
Ltot | Total length of test section (ca) | 10 m |
Lwo1 | Full bore length of washout section | 1.66m |
Lwo2 | Length of increased diameter washout section | 1.805 m |
Q | Volumetric flow rate | |
U | Average flow velocity in regular section of annulus | 0.5 m/s |
V | Annular volume of the test section | |
Vo | Measured voltage signal of a conductivity probe | |
Vo,max | Measured voltage signal of a conductivity probe in high-conductivity fluid | |
Vo,min | Measured voltage signal of a conductivity probe in low-conductivity fluid | |
Voffset | Offset voltage signal of a conductivity probe | |
Vr | Relative voltage response | |
Fluid shear rate | ||
Fluid characteristic shear rate | ||
Δ | Center-center distance of electrodes | 8 mm |
ε | Inner pipe eccentricity | 0 and −0.42 |
χ | Displacement efficiency | |
δ | Diameter of electrodes | 3 mm |
λ | Resistance per unit length | |
θ | Wellbore angle from vertical | |
σ | Electrical conductivity of fluid | |
τ | Fluid shear stress | |
τs | Fluid surplus stress | |
τy | Fluid yield stress | |
ψ | Electrical resistivity of fluid |
References
- Daccord, G.; Guillot, D.; Nilsson, F. Mud removal. In Well Cementing, 2nd ed.; Nelson, E.B., Guillot, D., Eds.; Schlumberger: Sugarland, TX, USA, 2006; pp. 143–189. [Google Scholar]
- Renteria, A.; Maleki, A.; Frigaard, I.A.; Lund, B.; Taghipour, A.; Ytrehus, J.D. Effects of irregularity on displacement flows in primary cementing of highly deviated wells. J. Pet. Sci. Eng. 2019, 172, 662–680. [Google Scholar] [CrossRef]
- Maleki, A.; Frigaard, I.A. Primary cementing of oil and gas wells in turbulent and mixed regimes. J. Eng. Math. 2017, 107, 201–230. [Google Scholar] [CrossRef]
- Tardy, P.M.J. A 3D model for annular displacements of wellbore completion fluids with casing movement. J. Pet. Sci. Eng. 2018, 162, 114–136. [Google Scholar] [CrossRef]
- Wilson, M.A.; Sabins, F.L. A laboratory investigation of cementing horizontal wells (SPE16928). SPE Drill. Eng. 1988, 3, 275–280. [Google Scholar] [CrossRef]
- Tehrani, A.; Ferguson, J.; Bittleston, S.H. Laminar Displacement in Annuli: A Combined Experimental and Theoretical Study. In Proceedings of the 67th Annual Technical Conference and Exhibition, Washington, DC, USA, 4–7 October 1992; Society of Petroleum Engineers: Richardson, TX, USA, 1992. SPE 24569. [Google Scholar]
- Lockyear, C.F.; Ryan, D.F.; Gunningham, M.M. Cement channeling: How to predict and prevent (SPE 19865). SPE Drill. Eng. 1990, 5, 201–208. [Google Scholar] [CrossRef]
- Deawwanich, T. Flow and Displacement of Viscoplastic Fluids in Eccentric Annuli. Ph.D. Thesis, The University of Adelaide, Adelaide, SA, Australia, March 2013. [Google Scholar]
- Jakobsen, J.; Sterri, N.; Saasen, A.; Aas, B.; Kjøsnes, I.; Vigen, A. Displacements in Eccentric Annuli During Primary Cementing in Deviated Wells. In Proceedings of the Production Operations Symposium, Oklahoma City, OK, USA, 7–9 April 1991; Society of Petroleum Engineers: Richardson, TX, USA, 1991. SPE 21686. [Google Scholar]
- Vefring, E.H.; Bjørkevoll, K.S.; Hansen, S.A.; Sterri, N.; Sævareid, O.; Aas, B. Optimization of Displacement Efficiency During Primary Cementing. In Proceedings of the Fifth Latin American and Caribbean Petroleum Engineering Conference and Exhibition, Rio de Janeiro, Brazil, 30 August–3 September 1997; Society of Petroleum Engineers: Richardson, TX, USA, 1997. SPE 39009. [Google Scholar]
- Kimura, K.; Takase, K.; Griffith, J.E.; Gibson, R.A.; Porter, D.S.; Becker, T.E. Custom-Blending Foamed Cement for Multiple Challenges. In Proceedings of the SPE/IADC Middle East Drilling Technology Conference, Abu Dhabi, UAE, 8–10 November 1999; Society of Petroleum Engineers: Richardson, TX, USA, 1999. SPE 57585. [Google Scholar]
- Clark, C.R.; Carter, L.G. Mud displacement with cement slurries (SPE 4090). SPE J. 1973, 25, 775–783. [Google Scholar]
- Zuiderwijk, J.J.M. Mud displacement in primary cementation. In Proceedings of the SPE-European Spring Meeting, Amsterdam, The Netherlands, 29–30 May 1974; Society of Petroleum Engineers: Richardson, TX, USA, 1974. SPE 4830. [Google Scholar]
- Crook, R.J.; Keller, S.R.; Wilson, M.A. Deviated Wellbore Cementing: Part 2 Solutions. J. Pet. Tech. 1987, 39, 961–966. [Google Scholar] [CrossRef]
- Smith, D.K. Chapter 7. In Cementing; SPE Monograph Series; Society of Petroleum Engineers: Richardson, TX, USA, 1990; Volume 4. [Google Scholar]
- Ytrehus, J.D.; Lund, B.; Taghipour, A.; Divyankar, S.; Saasen, S. Experimental investigation of wellbore fluid displacement in concentric and eccentric annulus. In Proceedings of the 36th International Conference on Ocean, Offshore and Arctic Engineering, Trondheim, Norway, 25–30 June 2017; American Society of Mechanical Engineers: New York, NY, USA, 2017. OMAE-62028. [Google Scholar]
- Lund, B.; Ytrehus, J.D.; Taghipour, A.; Divyankar, S.; Saasen, S. Fluid-fluid displacement for primary cementing in deviated washout sections. In Proceedings of the 37th International Conference on Ocean, Offshore and Arctic Engineering, Madrid, Spain, 17–22 June 2018; American Society of Mechanical Engineers: New York, NY, USA, 2018. OMAE-78707. [Google Scholar]
- Skadsem, H.J.; Kragset, S.; Lund, B.; Ytrehus, J.D.; Taghipour, A. Annular displacement in a highly inclined irregular wellbore: Experimental and three-dimensional numerical simulations. J. Pet. Sci. Eng. 2019, 172, 998–1013. [Google Scholar] [CrossRef]
- Saasen, A.; Lund, B.; Ytrehus, J.D. Theoretical Basis for Prediction of Drilling Fluid Removal in Annuli. In Proceedings of the 36th International Conference on Ocean, Offshore and Arctic Engineering, Trondheim, Norway, 25–30 June 2017; American Society of Mechanical Engineers: New York, NY, USA, 2017. OMAE-61030. [Google Scholar]
- Kennelly, A.E. The Linear Resistance between Parallel Conducting Cylinders in a Medium of Uniform Conductivity. Proc. Am. Phil. Soc. 1909, 48, 142–165. [Google Scholar]
- Saasen, A.; Ytrehus, J.D. Rheological Properties of Drilling Fluids–Use of Dimensionless Shear Rates in Herschel-Bulkley Models and Power-Law Models. Appl. Rheol. 2018, 28, 201854515. [Google Scholar]
- Lund, B.; Ytrehus, J.D.; Taghipour, A.; Saasen, A. Displacement Efficiency In Eccentric Annuli. In Proceedings of the 39th International Conference on Ocean, Offshore and Arctic Engineering, Virtual Conference, Fort Lauderdale, FL, USA, 3–7 August 2020; American Society of Mechanical Engineers: New York, NY, USA, 2020. OMAE-18707. [Google Scholar]
Fluid System 1 | Fluid System 2 | |||
---|---|---|---|---|
Component | Displaced | Displacing | Displaced | Displacing |
Tap water | 98.6 | 85 | 98 | 73 |
Sucrose | 0 | 0 | 0 | 24.5 |
Laponite | 1.4 | 0 | 1.5 | 0 |
Xanthan Gum | 0 | 0.67 | 0.1 | 0 |
CMC | 0 | 0 | 0 | 0.78 |
NaCl | 0 | 0.8 | 0 | 1.2 |
Soda Ash | 0 | 0.37 | 0 | 0.42 |
Biocide | 0 | 0.09 | 0.08 | 0.1 |
Barite | 0 | 12.5 | 0 | 0 |
Parameter | Symbol | Value |
---|---|---|
Total length of test section (ca) | Ltot | 10 m |
Inner diameter of annulus (outer diameter of inner pipe) | Di | 0.127 m (5”) |
Inner diameter of gauge outer pipe | Do | 0.1651 m (6.5”) |
Inner diameter of washout section | Dwo | 0.2794 m (11”) |
Length of each pipe section | Ls | 1.920 m |
Full bore length of washout section | Lwo1 | 1.660 m |
Length of increased diameter washout section | Lwo2 | 1.805 m |
Eccentricity | ε | 0 and −0.42 |
Name | Type | Position |
---|---|---|
DP1 (DP10) | Fuji FCX, Type FKCW35V2AXAYYAE, Range-130 to 130 kPa | Between 2 m and 4 m from inlet |
DP2 (DP4) | Fuji FCX-AII, Type FKCW35V4AXCYYAE, Range-130 to 130 kPa | Between 4 m and 6 m from inlet |
DP3 (DP1) | Fuji FCX, Type FKCW43V2-AXCYY-AF, Range-32 kPa to +32 kPa. | Between 6 m and 8 m from inlet (across irregular section) |
Camera | Position |
---|---|
1 | Section 2 (between stations A and B), vertical view from bottom |
2 | Section 2 (between stations A and B), side view |
3 | Section 3 (between stations B and C), side view |
4 | Section 4 (washout section, between stations C and D), vertical view from bottom |
5 | Section 4 (washout section, between stations C and D), side view |
6 | Section 5 (after station D), side view |
Properties | Displaced | Displacing |
---|---|---|
Fluid density ρ (kg/m3) | 1000 | 1100 |
Yield stress τy (Pa) | 4.9 | 1.8 |
Consistency index K (Pa.sn) | 0.47 | 0.87 |
Fluid flow index n (-) | 0.55 | 0.57 |
Surplus stress τs (Pa) @ = 158 s-1 | 7.2 | 15.3 |
Reynolds number @ U = 0.5 m/s (-) | 199 | 164 |
Pressure gradient @ U = 0.5 m/s (Pa/m) (eccentric/concentric) | 1293/1580 | 1729/2108 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lund, B.; Taghipour, A.; Ytrehus, J.D.; Saasen, A. Experimental Methods for Investigation of Drilling Fluid Displacement in Irregular Annuli. Energies 2020, 13, 5201. https://doi.org/10.3390/en13195201
Lund B, Taghipour A, Ytrehus JD, Saasen A. Experimental Methods for Investigation of Drilling Fluid Displacement in Irregular Annuli. Energies. 2020; 13(19):5201. https://doi.org/10.3390/en13195201
Chicago/Turabian StyleLund, Bjørnar, Ali Taghipour, Jan David Ytrehus, and Arild Saasen. 2020. "Experimental Methods for Investigation of Drilling Fluid Displacement in Irregular Annuli" Energies 13, no. 19: 5201. https://doi.org/10.3390/en13195201
APA StyleLund, B., Taghipour, A., Ytrehus, J. D., & Saasen, A. (2020). Experimental Methods for Investigation of Drilling Fluid Displacement in Irregular Annuli. Energies, 13(19), 5201. https://doi.org/10.3390/en13195201