Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems
Abstract
:1. Introduction
2. Background
2.1. Energy Policy for Sustainable Development
2.2. Biomass Energy Application
2.3. Building Energy Saving
2.4. Power Plant and Electric Systems
3. Research Topics Represented in this Special Issue
3.1. Energy Policy for Sustainable Development
3.2. Biomaas Energy Application
3.3. Buiding Energy Saving
3.4. Power Plant and Electric Systems
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ghiani, E.; Galici, M.; Mureddu, M.; Pilo, F. Impact on Electricity Consumption and Market Pricing of Energy and Ancillary Services during Pandemic of COVID-19 in Italy. Energies 2020, 13, 3357. [Google Scholar] [CrossRef]
- Graff, M.; Carley, S. COVID-19 assistance needs to target energy insecurity. Nat. Energy 2020, 5, 352–354. [Google Scholar] [CrossRef]
- Guo, Y.; Hawkes, A. The impact of demand uncertainties and China-US natural gas tariff on global gas trade. Energy 2019, 175, 205–217. [Google Scholar] [CrossRef]
- Eroglu, H. Effects of Covid-19 outbreak on environment and renewable energy sector. Environ. Dev. Sustain. 2020, 1–9. [Google Scholar] [CrossRef]
- Jin, S. COVID-19, Climate Change, and Renewable Energy Research: We Are All in This Together, and the Time to Act Is Now. ACS Energy Lett. 2020, 5, 1709–1711. [Google Scholar] [CrossRef]
- Streimikiene, D.; Lekavicius, V.; Balezentis, T.; Kyriakopoulos, G.L.; Abrham, J. Climate Change Mitigation Policies Targeting Households and Addressing Energy Poverty in European Union. Energies 2020, 13, 3389. [Google Scholar] [CrossRef]
- Karlsdottir, M.R.; Heinonen, J.; Pálsson, H.; Palsson, O.P. High-Temperature Geothermal Utilization in the Context of European Energy Policy—Implications and Limitations. Energies 2020, 13, 3187. [Google Scholar] [CrossRef]
- European Commission. Energy Roadmap 2050; Publications Office of the European Union: Luxembourg, 2012; Available online: https://ec.europa.eu/energy/sites/ener/files/documents/2012_energy_roadmap_2050_en_0.pdf (accessed on 8 October 2020).
- Petroleum, B. BP Statistical Review of World Energy. Available online: //www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf (accessed on 8 October 2020).
- Fortunski, B. Sustainable Development and Energy Policy: Actual CO2 Emissions in the European Union in the Years 1997–2017, Considering Trade with China and the USA. Sustainability 2020, 12, 3363. [Google Scholar] [CrossRef] [Green Version]
- Fawcett, T.; Killip, G. Re-thinking energy efficiency in European policy: Practitioners’ use of ‘multiple benefits’ arguments. J. Clean. Prod. 2019, 210, 1171–1179. [Google Scholar] [CrossRef]
- Calise, F.; Costa, M.; Wang, Q.; Zhang, X.; Duić, N. Recent Advances in the Analysis of Sustainable Energy Systems. Energies 2018, 11, 2520. [Google Scholar] [CrossRef] [Green Version]
- Burke, M.J.; Stephens, J.C. Energy democracy: Goals and policy instruments for sociotechnical transitions. Energy Res. Soc. Sci. 2017, 33, 35–48. [Google Scholar] [CrossRef]
- Lee, K.-H.; Min, B. Green R&D for eco-innovation and its impact on carbon emissions and firm performance. J. Clean. Prod. 2015, 108, 534–542. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Peng, X.; Wei, R.; Qin, Y.; Zhu, X.-H. Environmental behavior research in resources conservation and management: A case study of Resources, Conservation and Recycling. Resour. Conserv. Recycl. 2019, 141, 431–440. [Google Scholar] [CrossRef]
- Hartwig, J.; Kockat, J.; Schade, W.; Braungardt, S. The macroeconomic effects of ambitious energy efficiency policy in Germany—Combining bottom-up energy modelling with a non-equilibrium macroeconomic model. Energy 2017, 124, 510–520. [Google Scholar] [CrossRef]
- Bert, V.; Allemon, J.; Sajet, P.; Dieu, S.; Papin, A.; Collet, S.; Gaucher, R.; Chalot, M.; Michiels, B.; Raventos, C. Torrefaction and pyrolysis of metal-enriched poplars from phytotechnologies: Effect of temperature and biomass chlorine content on metal distribution in end-products and valorization options. Biomass Bioenergy 2017, 96, 1–11. [Google Scholar] [CrossRef]
- Vicente, E.D.; Alves, C.A. An overview of particulate emissions from residential biomass combustion. Atmos. Res. 2018, 199, 159–185. [Google Scholar] [CrossRef]
- Aghaalikhani, A.; Savuto, E.; Di Carlo, A.; Borello, D. Poplar from phytoremediation as a renewable energy source: Gasification properties and pollution analysis. Energy Procedia 2017, 142, 924–931. [Google Scholar] [CrossRef]
- Soltero, V.M.; Chacartegui, R.; Ortiz, C.; Lizana, J.; Quirosa, G. Biomass District Heating Systems Based on Agriculture Residues. Appl. Sci. 2018, 8, 476. [Google Scholar] [CrossRef] [Green Version]
- Mazzarella, L. Energy retrofit of historic and existing buildings. The legislative and regulatory point of view. Energy Build. 2015, 95, 23–31. [Google Scholar] [CrossRef]
- Ferrari, S.; Riva, A. Insulating a Solid Brick Wall from Inside: Heat and Moisture Transfer Analysis of Different Options. J. Arch. Eng. 2019, 25, 04018032. [Google Scholar] [CrossRef]
- Blázquez, T.; Ferrari, S.; Suarez, R.; Sendra, J.J. Adaptive approach-based assessment of a heritage residential complex in southern Spain for improving comfort and energy efficiency through passive strategies: A study based on a monitored flat. Energy 2019, 181, 504–520. [Google Scholar] [CrossRef]
- Salem, R.; Bahadori-Jahromi, A.; Mylona, A.; Godfrey, P.; Cook, D. Investigating the potential impact of energy-efficient measures for retrofitting existing UK hotels to reach the nearly zero energy building (nZEB) standard. Energy Effic. 2019, 12, 1577–1594. [Google Scholar] [CrossRef]
- Hast, A.; Rinne, S.; Syri, S.; Kiviluoma, J. The role of heat storages in facilitating the adaptation of district heating systems to large amount of variable renewable electricity. Energy 2017, 137, 775–788. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, R. A sorption thermal storage system with large concentration glide. Energy 2017, 141, 380–388. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, P.; Zheng, C.; Zhang, Y.; Peng, J.; Zeng, Z. Analysis on the organization and Development of multi-microgrids. Renew. Sustain. Energy Rev. 2018, 81, 2204–2216. [Google Scholar] [CrossRef]
- Lund, H.; Østergaard, P.A.; Connolly, D.; Ridjan, I.; Mathiesen, B.V.; Hvelplund, F.; Thellufsen, J.Z.; Sorknses, P. Energy storage and smart energy systems. Int. J. Sustain. Energy Plan. Manag. 2016, 11, 3–14. [Google Scholar]
- Tschulkow, M.; Compernolle, T.; Bosch, S.V.D.; Van Aelst, J.; Storms, I.; Van Dael, M.; Bossche, G.V.D.; Sels, B.F.; Van Passel, S. Integrated techno-economic assessment of a biorefinery process: The high-end valorization of the lignocellulosic fraction in wood streams. J. Clean. Prod. 2020, 266, 122022. [Google Scholar] [CrossRef]
- Foley, A.; Olabi, A.G. Renewable energy technology developments, trends and policy implications that can underpin the drive for global climate change. Renew. Sustain. Energy Rev. 2017, 68, 1112–1114. [Google Scholar] [CrossRef] [Green Version]
- Ko, D.-H.; Chung, J.; Lee, K.-S.; Park, J.-S.; Yi, J.-H. Current Policy and Technology for Tidal Current Energy in Korea. Energies 2019, 12, 1807. [Google Scholar] [CrossRef] [Green Version]
- Cheah, K.W.; Yusup, S.; Singh, H.K.G.; Uemura, Y.; Lam, H.L.; Wai, C.K. Process simulation and techno economic analysis of renewable diesel production via catalytic decarboxylation of rubber seed oil—A case study in Malaysia. J. Environ. Manag. 2017, 203, 950–961. [Google Scholar] [CrossRef]
- Lee, C.Y.; Lotsu, S.; Islam, M.; Yoshida, Y.; Kaneko, S. The Impact of an Energy Efficiency Improvement Policy on the Economic Performance of Electricity-Intensive Firms in Ghana. Energies 2019, 12, 3684. [Google Scholar] [CrossRef] [Green Version]
- Dong, F.; Shi, L.; Ding, X.; Li, Y.; Shi, Y. Study on China’s Renewable Energy Policy Reform and Improved Design of Renewable Portfolio Standard. Energies 2019, 12, 2147. [Google Scholar] [CrossRef] [Green Version]
- Di Fraia, S.; Massarotti, N.; Prati, M.; Vanoli, L. A new example of circular economy: Waste vegetable oil for cogeneration in wastewater treatment plants. Energy Convers. Manag. 2020, 211, 112763. [Google Scholar] [CrossRef]
- Tani, A.; Morone, P. Policy Implications for the Clean Energy Transition: The Case of the Boston Area. Energies 2020, 13, 2615. [Google Scholar] [CrossRef]
- Valiño, L.; Sarasa, C.; Duarte, R. Economy-wide effects of a sustainable pathway in the pig sector: A case study in Aragon (Spain). J. Environ. Manag. 2019, 239, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Tańczuk, M.; Skorek, J.; Bargiel, P. Energy and economic optimization of the repowering of coal-fired municipal district heating source by a gas turbine. Energy Convers. Manag. 2017, 149, 885–895. [Google Scholar] [CrossRef]
- Sibilio, S.; Rosato, A.; Ciampi, G.; Entchev, E.; Ribberink, H. Energy, Environmental and Economic Performance of a Micro-trigeneration System upon Varying the Electric Vehicle Charging Profiles. J. Sustain. Dev. Energy Water Environ. Syst. 2017, 5, 309–331. [Google Scholar] [CrossRef] [Green Version]
- Carriço, J.; Fernandes, J.; Fernandes, C.; Branco, P.J.C. Technical and Economic Assessment of a 450 W Autonomous Photovoltaic System with Lithium Iron Phosphate Battery Storage. J. Sustain. Dev. Energy Water Environ. Syst. 2017, 6, 129–149. [Google Scholar] [CrossRef] [Green Version]
- Roefs, P.; Moretti, M.; Welkenhuysen, K.; Piessens, K.; Compernolle, T. CO2-enhanced oil recovery and CO2 capture and storage: An environmental economic trade-off analysis. J. Environ. Manag. 2019, 239, 167–177. [Google Scholar] [CrossRef]
- Giacalone, F.; Papapetrou, M.; Kosmadakis, G.; Tamburini, A.; Micale, G.; Cipollina, A. Application of reverse electrodialysis to site-specific types of saline solutions: A techno-economic assessment. Energy 2019, 181, 532–547. [Google Scholar] [CrossRef]
- Tańczuk, M.; Kostowski, W.; Karaś, M. Applying waste heat recovery system in a sewage sludge dryer—A technical and economic optimization. Energy Convers. Manag. 2016, 125, 121–132. [Google Scholar] [CrossRef]
- Calise, F.; Figaj, R.D.; Vanoli, L. A novel polygeneration system integrating photovoltaic/thermal collectors, solar assisted heat pump, adsorption chiller and electrical energy storage: Dynamic and energy-economic analysis. Energy Convers. Manag. 2017, 149, 798–814. [Google Scholar] [CrossRef]
- Carotenuto, A.; Figaj, R.D.; Vanoli, L. A novel solar-geothermal district heating, cooling and domestic hot water system: Dynamic simulation and energy-economic analysis. Energy 2017, 141, 2652–2669. [Google Scholar] [CrossRef]
- Sibilio, S.; Rosato, A.; Ciampi, G.; Scorpio, M.; Akisawa, A. Building-integrated trigeneration system: Energy, environmental and economic dynamic performance assessment for Italian residential applications. Renew. Sustain. Energy Rev. 2017, 68, 920–933. [Google Scholar] [CrossRef]
- Teixeira, A.M.; Arinelli, L.D.O.; De Medeiros, J.L.; Araújo, O.D.Q.F. Economic leverage affords post-combustion capture of 43% of carbon emissions: Supersonic separators for methanol hydrate inhibitor recovery from raw natural gas and CO2 drying. J. Environ. Manag. 2019, 236, 534–550. [Google Scholar] [CrossRef] [PubMed]
- Dozic, D.J.; Urosevic, B.D.G. Application of artificial neural networks for testing long-term energy policy targets. Energy 2019, 174, 488–496. [Google Scholar] [CrossRef]
- Wiesberg, I.L.; Brigagão, G.V.; De Medeiros, J.L.; Araújo, O.D.Q.F. Carbon dioxide utilization in a microalga-based biorefinery: Efficiency of carbon removal and economic performance under carbon taxation. J. Environ. Manag. 2017, 203, 988–998. [Google Scholar] [CrossRef] [PubMed]
- Larrain, M.; Van Passel, S.; Thomassen, G.; Kresovic, U.; Alderweireldt, N.; Moerman, E.; Billen, P. Economic performance of pyrolysis of mixed plastic waste: Open-loop versus closed-loop recycling. J. Clean. Prod. 2020, 270, 122442. [Google Scholar] [CrossRef]
- Bertheau, P. Supplying not electrified islands with 100% renewable energy based micro grids: A geospatial and techno-economic analysis for the Philippines. Energy 2020, 202, 117670. [Google Scholar] [CrossRef]
- Picallo-Perez, A.; Catrini, P.; Piacentino, A.; Sala, J.M. A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems. Energy 2019, 180, 819–837. [Google Scholar] [CrossRef]
- Kuang, Y.; Yen, B.T.; Suprun, E.; Sahin, O. A soft traffic management approach for achieving environmentally sustainable and economically viable outcomes: An Australian case study. J. Environ. Manag. 2019, 237, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-H.; Lou, K.-R.; Ko, C.-H. Potential of bioenergy production from biomass wastes of rice paddies and forest sectors in Taiwan. J. Clean. Prod. 2019, 206, 460–476. [Google Scholar] [CrossRef]
- Chan, K.-L.; Dong, C.; Wong, M.S.; Kim, L.-H.; Leu, S.-Y. Plant chemistry associated dynamic modelling to enhance urban vegetation carbon sequestration potential via bioenergy harvesting. J. Clean. Prod. 2018, 197, 1084–1094. [Google Scholar] [CrossRef]
- Szulczewski, W.; Żyromski, A.; Jakubowski, W.; Biniak-Pieróg, M. A new method for the estimation of biomass yield of giant miscanthus ( Miscanthus giganteus ) in the course of vegetation. Renew. Sustain. Energy Rev. 2018, 82, 1787–1795. [Google Scholar] [CrossRef]
- Borsukiewicz, A.; Klonowicz, P.; Król, D.; Wiśniewski, S.; Zwarycz-Makles, K. Techno-economic analysis of CHP system supplied by waste forest biomass. Waste Manag. Res. 2015, 33, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Striūgas, N.; Vorotinskienė, L.; Paulauskas, R.; Navakas, R.; Džiugys, A.; Narbutas, L. Estimating the fuel moisture content to control the reciprocating grate furnace firing wet woody biomass. Energy Convers. Manag. 2017, 149, 937–949. [Google Scholar] [CrossRef]
- Luz, F.C.; Cordiner, S.; Manni, A.; Mulone, V.; Rocco, V. Biomass fast pyrolysis in screw reactors: Prediction of spent coffee grounds bio-oil production through a monodimensional model. Energy Convers. Manag. 2018, 168, 98–106. [Google Scholar] [CrossRef]
- Chng, L.M.; Chan, D.J.C.; Lee, K.T. Sustainable production of bioethanol using lipid-extracted biomass from Scenedesmus dimorphus. J. Clean. Prod. 2016, 130, 68–73. [Google Scholar] [CrossRef]
- Peralta-Ruiz, Y.; González-Delgado, A.-D.; Kafarov, V. Evaluation of alternatives for microalgae oil extraction based on exergy analysis. Appl. Energy 2013, 101, 226–236. [Google Scholar] [CrossRef]
- Wzorek, M.; Tańczuk, M. Production of biosolid fuels from municipal sewage sludge: Technical and economic optimisation. Waste Manag. Res. 2015, 33, 704–714. [Google Scholar] [CrossRef]
- Silva, C.; Ferreira, A.F.; Dias, A.P.S.; Costa, M. A comparison between microalgae virtual biorefinery arrangements for bio-oil production based on lab-scale results. J. Clean. Prod. 2016, 130, 58–67. [Google Scholar] [CrossRef]
- Eggemann, L.; Escobar, N.; Peters, R.; Burauel, P.; Stolten, D. Life cycle assessment of a small-scale methanol production system: A power-to-fuel strategy for biogas plants. J. Clean. Prod. 2020, 271, 122476. [Google Scholar] [CrossRef]
- Kazagic, A.; Music, M.; Smajevic, I.; Ademovic, A.; Redzic, E. Possibilities and sustainability of “biomass for power” solutions in the case of a coal-based power utility. Clean Technol. Environ. Policy 2016, 18, 1675–1683. [Google Scholar] [CrossRef]
- Hussain, C.I.; Norton, B.; Duffy, A. Technological assessment of different solar-biomass systems for hybrid power generation in Europe. Renew. Sustain. Energy Rev. 2017, 68, 1115–1129. [Google Scholar] [CrossRef] [Green Version]
- Aste, N.; Caputo, P.; Del Pero, C.; Ferla, G.; Huerto-Cardenas, H.E.; Leonforte, F.; Miglioli, A. A renewable energy scenario for a new low carbon settlement in northern Italy: Biomass district heating coupled with heat pump and solar photovoltaic system. Energy 2020, 206, 118091. [Google Scholar] [CrossRef]
- Milani, M.; Montorsi, L. Energy Recovery of the Biomass from Livestock Farms in Italy: The Case of Modena Province. J. Sustain. Dev. Energy Water Environ. Syst. 2018, 6, 464–480. [Google Scholar] [CrossRef]
- Pfeifer, A.; Dominković, D.F.; Ćosić, B.; Duić, N. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land: Case of Croatia. Energy Convers. Manag. 2016, 125, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Ooba, M.; Fujii, M.; Hayashi, K. Geospatial distribution of ecosystem services and biomass energy potential in eastern Japan. J. Clean. Prod. 2016, 130, 35–44. [Google Scholar] [CrossRef]
- Yang, D.; Jia, X.; Dang, M.; Han, F.; Shi, F.; Tanikawa, H.; Klemeš, J.J. Life cycle assessment of cleaner production measures in monosodium glutamate production: A case study in China. J. Clean. Prod. 2020, 270, 122126. [Google Scholar] [CrossRef]
- Kılkış, Ş. Sustainability-oriented innovation system analyses of Brazil, Russia, India, China, South Africa, Turkey and Singapore. J. Clean. Prod. 2016, 130, 235–247. [Google Scholar] [CrossRef]
- Mikulandric, R.; Böhning, D.; Böhme, R.; Helsen, L.; Beckmann, M.; Loncar, D. Dynamic modelling of biomass gasification in a co-current fixed bed gasifier. Energy Convers. Manag. 2016, 125, 264–276. [Google Scholar] [CrossRef] [Green Version]
- La Villetta, M.; Costa, M.; Cirillo, D.; Massarotti, N.; Vanoli, L. Performance analysis of a biomass powered micro-cogeneration system based on gasification and syngas conversion in a reciprocating engine. Energy Convers. Manag. 2018, 175, 33–48. [Google Scholar] [CrossRef]
- Vukasinovic, V.; Gordic, D.; Zivkovic, M.; Koncalovic, D.; Zivkovic, D. Long-term planning methodology for improving wood biomass utilization. Energy 2019, 175, 818–829. [Google Scholar] [CrossRef]
- Ancona, V.; Caracciolo, A.B.; Campanale, C.; De Caprariis, B.; Grenni, P.; Uricchio, V.F.; Borello, D. Gasification treatment of poplar biomass produced in a contaminated area restored using plant assisted bioremediation. J. Environ. Manag. 2019, 239, 137–141. [Google Scholar] [CrossRef]
- Caputo, P.; Ferla, G.; Ferrari, S. Evaluation of environmental and energy effects of biomass district heating by a wide survey based on operational conditions in Italy. Energy 2019, 174, 1210–1218. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, H.; Wang, X.; Du, W.; Mikulčić, H.; Duić, N. Study on extracting available salt from straw/woody biomass ashes and predicting its slagging/fouling tendency. J. Clean. Prod. 2017, 155, 164–171. [Google Scholar] [CrossRef]
- Mikulandrić, R.; Vermeulen, B.; Nicolai, B.; Saeys, W. Modelling of thermal processes during extrusion based densification of agricultural biomass residues. Appl. Energy 2016, 184, 1316–1331. [Google Scholar] [CrossRef]
- Tomasek, S.; Lónyi, F.; Valyon, J.; Hancsók, J. Fuel purpose hydrocracking of biomass based Fischer-Tropsch paraffin mixtures on bifunctional catalysts. Energy Convers. Manag. 2020, 213, 112775. [Google Scholar] [CrossRef]
- Ko, C.-H.; Chaiprapat, S.; Kim, L.-H.; Hadi, P.; Hsu, S.-C.; Leu, S.-Y. Carbon sequestration potential via energy harvesting from agricultural biomass residues in Mekong River basin, Southeast Asia. Renew. Sustain. Energy Rev. 2017, 68, 1051–1062. [Google Scholar] [CrossRef]
- Zhu, Y.; Tan, H.; Niu, Y.; Wang, Y.; Mikulčić, H.; Vujanović, M.; Duić, N. Modelling study on the effect of ash fusion characteristics on the biomass slagging behavior. Therm. Sci. 2018, 22, 2113–2121. [Google Scholar] [CrossRef] [Green Version]
- Růžičková, J.; Kucbel, M.; Raclavská, H.; Švédová, B.; Raclavský, K.; Juchelková, D. Comparison of organic compounds in char and soot from the combustion of biomass in boilers of various emission classes. J. Environ. Manag. 2019, 236, 769–783. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jin, Q.; Wang, L.; Bai, S.; Mikulčić, H.; Vujanović, M.; Wang, X. Synergistic effect of biomass and polyurethane waste co-pyrolysis on soot formation at high temperatures. J. Environ. Manag. 2019, 239, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Zambrana-Vasquez, D.; Zabalza-Bribián, I.; Jañez, A.; Aranda-Usón, A. Analysis of the environmental performance of life-cycle building waste management strategies in tertiary buildings. J. Clean. Prod. 2016, 130, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Gourlis, G.; Kovacic, I. A study on building performance analysis for energy retrofit of existing industrial facilities. Appl. Energy 2016, 184, 1389–1399. [Google Scholar] [CrossRef]
- Marrasso, E.; Roselli, C.; Sasso, M.; Tariello, F. Comparison of centralized and decentralized air-conditioning systems for a multi-storey/multi users building integrated with electric and diesel vehicles and considering the evolution of the national energy system. Energy 2019, 177, 319–333. [Google Scholar] [CrossRef]
- Chong, H.-Y.; Wang, X. The outlook of building information modeling for sustainable development. Clean Technol. Environ. Policy 2016, 18, 1877–1887. [Google Scholar] [CrossRef] [Green Version]
- Herrando, M.; Cambra, D.; Navarro, M.; De La Cruz, L.; Millán, G.; Zabalza, I.; Bribián, I.Z. Energy Performance Certification of Faculty Buildings in Spain: The gap between estimated and real energy consumption. Energy Convers. Manag. 2016, 125, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Borjigin, S.; Zhang, S.; Ma, T.; Zeng, M.; Wang, Q. Performance enhancement of cabinet cooling system by utilizing cross-flow plate heat exchanger. Energy Convers. Manag. 2020, 213, 112854. [Google Scholar] [CrossRef]
- Horvat, I.; Dović, D. Dynamic modeling approach for determining buildings technical system energy performance. Energy Convers. Manag. 2016, 125, 154–165. [Google Scholar] [CrossRef]
- Ferrari, S.; Zagarella, F.; Caputo, P.; D’Amico, A. Results of a literature review on methods for estimating buildings energy demand at district level. Energy 2019, 175, 1130–1137. [Google Scholar] [CrossRef]
- Barone, G.; Buonomano, A.; Forzano, C.; Palombo, A. Enhancing trains envelope—Heating, ventilation, and air conditioning systems: A new dynamic simulation approach for energy, economic, environmental impact and thermal comfort analyses. Energy 2020, 204, 117833. [Google Scholar] [CrossRef]
- Gourlis, G.; Kovacic, I. Passive measures for preventing summer overheating in industrial buildings under consideration of varying manufacturing process loads. Energy 2017, 137, 1175–1185. [Google Scholar] [CrossRef]
- De Guinoa, A.S.; Zambrana-Vasquez, D.; Alcalde, A.; Corradini, M.; Bribián, I.Z. Environmental assessment of a nano-technological aerogel-based panel for building insulation. J. Clean. Prod. 2017, 161, 1404–1415. [Google Scholar] [CrossRef] [Green Version]
- Berardi, U.; Tronchin, L.; Manfren, M.; Nastasi, B. On the Effects of Variation of Thermal Conductivity in Buildings in the Italian Construction Sector. Energies 2018, 11, 872. [Google Scholar] [CrossRef] [Green Version]
- Pavičević, M.; Novosel, T.; Pukšec, T.; Duic, N. Hourly optimization and sizing of district heating systems considering building refurbishment—Case study for the city of Zagreb. Energy 2017, 137, 1264–1276. [Google Scholar] [CrossRef]
- Gil-Baez, M.; Barrios-Padura, Á.; Molina-Huelva, M.; Chacartegui, R. Natural ventilation systems in 21st-century for near zero energy school buildings. Energy 2017, 137, 1186–1200. [Google Scholar] [CrossRef]
- Kilkis, B. Exergy-Optimum Coupling of Heat Recovery Ventilation Units with Heat Pumps in Sustainable Buildings. J. Sustain. Dev. Energy Water Environ. Syst. 2020, 8, 815–845. [Google Scholar] [CrossRef]
- Sholahudin, S.; Han, H. Simplified dynamic neural network model to predict heating load of a building using Taguchi method. Energy 2016, 115, 1672–1678. [Google Scholar] [CrossRef]
- Gourlis, G.; Kovacic, I. Building Information Modelling for analysis of energy efficient industrial buildings—A case study. Renew. Sustain. Energy Rev. 2017, 68, 953–963. [Google Scholar] [CrossRef]
- Krstić-Furundžić, A.; Vujosevic, M.; Petrovski, A. Energy and environmental performance of the office building facade scenarios. Energy 2019, 183, 437–447. [Google Scholar] [CrossRef]
- Asfour, O.S. Proposed Measures to Protect Temporary Roofs from Unwanted Heat Gains. J. Sustain. Dev. Energy Water Environ. Syst. 2017, 5, 191–201. [Google Scholar] [CrossRef] [Green Version]
- Ramos, J.; Aires, L. The Effect of a Naturally Ventilated Roof on the Thermal Behaviour of a Building under Mediterranean Summer Conditions. J. Sustain. Dev. Energy Water Environ. Syst. 2020, 8, 508–519. [Google Scholar] [CrossRef] [Green Version]
- Zagarella, P.C.S.F.G.F.F. Preliminary Energy Evaluations for the Retrofit of Rural Protected Buildings in a Peripheral Context of Milan. J. Sustain. Dev. Energy Water Environ. Syst. 2020, 8, 715–734. [Google Scholar]
- Tettey, U.Y.A.; Gustavsson, L. Energy savings and overheating risk of deep energy renovation of a multi-storey residential building in a cold climate under climate change. Energy 2020, 202, 117578. [Google Scholar] [CrossRef]
- Bottino-Leone, D.; Larcher, M.; Herrera-Avellanosa, D.; Haas, F.; Troi, A. Evaluation of natural-based internal insulation systems in historic buildings through a holistic approach. Energy 2019, 181, 521–531. [Google Scholar] [CrossRef]
- Piselli, C.; Pisello, A.L. Occupant behavior long-term continuous monitoring integrated to prediction models: Impact on office building energy performance. Energy 2019, 176, 667–681. [Google Scholar] [CrossRef]
- Cipek, M.; Pavković, D.; Kljaić, Z.; Mlinarić, T.J. Assessment of battery-hybrid diesel-electric locomotive fuel savings and emission reduction potentials based on a realistic mountainous rail route. Energy 2019, 173, 1154–1171. [Google Scholar] [CrossRef]
- Zvar-Baskovic, U.; Vihar, R.; Rodman-Opresnik, S.; Katrašnik, T. Simultaneous particulate matter and nitrogen oxide emission reduction through enhanced charge homogenization in diesel engines. Therm. Sci. 2018, 22, 2039–2052. [Google Scholar] [CrossRef]
- Bekteshi, S.; Kabashi, S.; Ahmetaj, S.; Slaus, I.; Zidansek, A.; Podrimqaku, K.; Kastrati, S. Dynamic Modeling of Kosovo’s Electricity Supply-Demand, Gaseous Emissions and Air Pollution. J. Sustain. Dev. Energy Water Environ. Syst. 2015, 3, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Branco, V.; Costa, M. Effect of particle size on the burnout and emissions of particulate matter from the combustion of pulverized agricultural residues in a drop tube furnace. Energy Convers. Manag. 2017, 149, 774–780. [Google Scholar] [CrossRef]
- Walmsley, M.R.; Walmsley, T.G.; Atkins, M.J. Linking greenhouse gas emissions footprint and energy return on investment in electricity generation planning. J. Clean. Prod. 2018, 200, 911–921. [Google Scholar] [CrossRef]
- Ajanovic, A.; Haas, R. The impact of energy policies in scenarios on GHG emission reduction in passenger car mobility in the EU-15. Renew. Sustain. Energy Rev. 2017, 68, 1088–1096. [Google Scholar] [CrossRef]
- Galic, M.; Bilandzija, D.; Percin, A.; Sestak, I.; Mesic, M.; Blazinkov, M.; Zgorelec, Z. Effects of Agricultural Practices on Carbon Emission and Soil Health. J. Sustain. Dev. Energy Water Environ. Syst. 2019, 7, 539–552. [Google Scholar] [CrossRef]
- Bonaventura, D.; Chacartegui, R.; Valverde, J.; Becerra, J.; Ortíz, C.; Lizana, J. Dry carbonate process for CO2 capture and storage: Integration with solar thermal power. Renew. Sustain. Energy Rev. 2018, 82, 1796–1812. [Google Scholar] [CrossRef]
- Interlenghi, S.F.; Silva, R.D.P.F.; De Medeiros, J.L.; Araújo, O.D.Q.F. Low-emission offshore Gas-To-Wire from natural gas with carbon dioxide: Supersonic separator conditioning and post-combustion decarbonation. Energy Convers. Manag. 2019, 195, 1334–1349. [Google Scholar] [CrossRef]
- Petranović, Z.; Bešenić, T.; Vujanović, M.; Duić, N. Modelling pollutant emissions in diesel engines, influence of biofuel on pollutant formation. J. Environ. Manag. 2017, 203, 1038–1046. [Google Scholar] [CrossRef]
- Vujanović, M.; Petranović, Z.; Edelbauer, W.; Duić, N. Modelling spray and combustion processes in diesel engine by using the coupled Eulerian–Eulerian and Eulerian–Lagrangian method. Energy Convers. Manag. 2016, 125, 15–25. [Google Scholar] [CrossRef]
- Chen, A.F.; Adzmi, M.A.; Adam, A.; Othman, M.F.; Kamaruzzaman, M.K.; Mrwan, A.G. Combustion characteristics, engine performances and emissions of a diesel engine using nanoparticle-diesel fuel blends with aluminium oxide, carbon nanotubes and silicon oxide. Energy Convers. Manag. 2018, 171, 461–477. [Google Scholar] [CrossRef]
- Vihar, R.; Baškovič, U.Ž.; Seljak, T.; Katrašnik, T. Combustion and emission formation phenomena of tire pyrolysis oil in a common rail Diesel engine. Energy Convers. Manag. 2017, 149, 706–721. [Google Scholar] [CrossRef] [Green Version]
- Yin, C. Development in biomass preparation for suspension firing towards higher biomass shares and better boiler performance and fuel rangeability. Energy 2020, 196, 117129. [Google Scholar] [CrossRef]
- Somogyi, V.; Sebestyén, V.; Kovács, Z.; Hargitai, R.H.; Domokos, E. Enhanced Pollution Removal with Heat Reclamation in a Small Hungarian Wastewater Treatment Plant. J. Sustain. Dev. Energy Water Environ. Syst. 2018, 6, 494–504. [Google Scholar] [CrossRef]
- Pukšec, T.; Mathiesen, B.V.; Novosel, T.; Duić, N. Assessing the impact of energy saving measures on the future energy demand and related GHG (greenhouse gas) emission reduction of Croatia. Energy 2014, 76, 198–209. [Google Scholar] [CrossRef] [Green Version]
- Schneider, D.R.; Kirac, M.; Hublin, A. Cost-effectiveness of GHG emission reduction measures and energy recovery from municipal waste in Croatia. Energy 2012, 48, 203–211. [Google Scholar] [CrossRef]
- Gładysz, P.; Ziębik, A. Life cycle assessment of an integrated oxy-fuel combustion power plant with CO2 capture, transport and storage—Poland case study. Energy 2015, 92, 328–340. [Google Scholar] [CrossRef]
- Nawi, W.N.R.M.; Alwi, S.R.W.; Manan, Z.A.; Klemeš, J.J. A systematic technique for cost-effective CO2 emission reduction in process plants. Clean Technol. Environ. Policy 2016, 18, 1769–1777. [Google Scholar] [CrossRef]
- Van Fan, Y.; Perry, S.; Klemeš, J.; Lee, C.T. A review on air emissions assessment: Transportation. J. Clean. Prod. 2018, 194, 673–684. [Google Scholar] [CrossRef]
- Van Fan, Y.; Tan, R.; Klemeš, J.J. A system analysis tool for sustainable biomass utilisation considering the Emissions-Cost Nexus. Energy Convers. Manag. 2020, 210, 112701. [Google Scholar] [CrossRef]
- Tronchin, L.; Manfren, M.; Nastasi, B. Energy efficiency, demand side management and energy storage technologies—A critical analysis of possible paths of integration in the built environment. Renew. Sustain. Energy Rev. 2018, 95, 341–353. [Google Scholar] [CrossRef]
- Buonomano, A.; Calise, F.; D’Accadia, M.D.; Vicidomini, M. A hybrid renewable system based on wind and solar energy coupled with an electrical storage: Dynamic simulation and economic assessment. Energy 2018, 155, 174–189. [Google Scholar] [CrossRef]
- Sorknaes, P. Simulation method for a pit seasonal thermal energy storage system with a heat pump in a district heating system. Energy 2018, 152, 533–538. [Google Scholar] [CrossRef]
- Milis, K.; Peremans, H.; Springael, J.; Van Passel, S. Win-win possibilities through capacity tariffs and battery storage in microgrids. Renew. Sustain. Energy Rev. 2019, 113, 109238. [Google Scholar] [CrossRef]
- Kokalj, F.; Arbiter, B.; Samec, N. Sewage sludge gasification as an alternative energy storage model. Energy Convers. Manag. 2017, 149, 738–747. [Google Scholar] [CrossRef]
- Marino, C.; Nucara, A.; Panzera, M.; Pietrafesa, M.; Varano, V. Energetic and economic analysis of a stand alone photovoltaic system with hydrogen storage. Renew. Energy 2019, 142, 316–329. [Google Scholar] [CrossRef]
- Moser, M.; Gils, H.-C.; Pivaro, G. A sensitivity analysis on large-scale electrical energy storage requirements in Europe under consideration of innovative storage technologies. J. Clean. Prod. 2020, 269, 122261. [Google Scholar] [CrossRef]
- Jin, T.-H.; Chung, M.; Shin, K.-Y.; Park, H.; Lim, G.-P. Real-Time Dynamic Simulation of Korean Power Grid for Frequency Regulation Control by MW Battery Energy Storage System. J. Sustain. Dev. Energy Water Environ. Syst. 2016, 4, 392–407. [Google Scholar] [CrossRef] [Green Version]
- Luburić, Z.; Pandžić, H.; Plavšić, T.; Teklić, L.; Valentić, V. Role of energy storage in ensuring transmission system adequacy and security. Energy 2018, 156, 229–239. [Google Scholar] [CrossRef]
- Milis, K.; Peremans, H.; Van Passel, S. Steering the adoption of battery storage through electricity tariff design. Renew. Sustain. Energy Rev. 2018, 98, 125–139. [Google Scholar] [CrossRef]
- Buonomano, A.; Calise, F.; Cappiello, F.; Palombo, A.; Vicidomini, M. Dynamic analysis of the integration of electric vehicles in efficient buildings fed by renewables. Appl. Energy 2019, 245, 31–50. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Cartenì, A.; D’Accadia, M.D.; Vicidomini, M. A novel paradigm for a sustainable mobility based on electric vehicles, photovoltaic panels and electric energy storage systems: Case studies for Naples and Salerno (Italy). Renew. Sustain. Energy Rev. 2019, 111, 97–114. [Google Scholar] [CrossRef]
- Gil Posada, J.O.; Rennie, A.J.R.; Villar, S.P.; Martins, V.L.; Marinaccio, J.; Barnes, A.; Glover, C.F.; Worsley, D.A.; Hall, P.J. Aqueous batteries as grid scale energy storage solutions. Renew. Sustain. Energy Rev. 2017, 68, 1174–1182. [Google Scholar] [CrossRef] [Green Version]
- Moser, S.; Mayrhofer, J.; Schmidt, R.; Tichler, R. Socioeconomic cost-benefit-analysis of seasonal heat storages in district heating systems with industrial waste heat integration. Energy 2018, 160, 868–874. [Google Scholar] [CrossRef]
- Scharinger-Urschitz, G.; Walter, H.; Brier, J. Experimental investigation on bimetallic tube compositions for the use in latent heat thermal energy storage units. Energy Convers. Manag. 2016, 125, 368–378. [Google Scholar] [CrossRef]
- Mehari, A.; Xu, Z.; Wang, R. Thermal energy storage using absorption cycle and system: A comprehensive review. Energy Convers. Manag. 2020, 206, 112482. [Google Scholar] [CrossRef]
- Dominković, D.F.; Krajačić, G. District Cooling Versus Individual Cooling in Urban Energy Systems: The Impact of District Energy Share in Cities on the Optimal Storage Sizing. Energies 2019, 12, 407. [Google Scholar] [CrossRef] [Green Version]
- Böhm, H.; Lindorfer, J. Techno-economic assessment of seasonal heat storage in district heating with thermochemical materials. Energy 2019, 179, 1246–1264. [Google Scholar] [CrossRef]
- Restrepo-Valencia, S.; Walter, A.C.S. Techno-Economic Assessment of Bio-Energy with Carbon Capture and Storage Systems in a Typical Sugarcane Mill in Brazil. Energies 2019, 12, 1129. [Google Scholar] [CrossRef] [Green Version]
- Pospíšil, J.; Charvát, P.; Arsenyeva, O.; Klimeš, L.; Špiláček, M.; Klemeš, J.J. Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage. Renew. Sustain. Energy Rev. 2019, 99, 1–15. [Google Scholar] [CrossRef]
- Carneiro, J.F.; Matos, C.R.; Van Gessel, S. Opportunities for large-scale energy storage in geological formations in mainland Portugal. Renew. Sustain. Energy Rev. 2019, 99, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Wagner, O.; Adisorn, T.; Tholen, L.; Kiyar, D. Surviving the Energy Transition: Development of a Proposal for Evaluating Sustainable Business Models for Incumbents in Germany’s Electricity Market. Energies 2020, 13, 730. [Google Scholar] [CrossRef] [Green Version]
- Podbregar, I.; Šimić, G.; Radovanović, M.; Filipović, S.; Šprajc, P. International Energy Security Risk Index—Analysis of the Methodological Settings. Energies 2020, 13, 3234. [Google Scholar] [CrossRef]
- Asatani, K.; Takeda, H.; Yamano, H.; Sakata, I. Scientific Attention to Sustainability and SDGs: Meta-Analysis of Academic Papers. Energies 2020, 13, 975. [Google Scholar] [CrossRef] [Green Version]
- Alrefai, R.; Alrefai, A.; Benyounis, K.; Stokes, J. An Evaluation of the Effects of the Potato Starch on the Biogas Produced from the Anaerobic Digestion of Potato Wastes. Energies 2020, 13, 2399. [Google Scholar] [CrossRef]
- Alrefai, A.; Alrefai, R.; Benyounis, K.; Stokes, J. Impact of Starch from Cassava Peel on Biogas Produced through the Anaerobic Digestion Process. Energies 2020, 13, 2713. [Google Scholar] [CrossRef]
- Roselli, C.; Sasso, M.; Tariello, F. A Wind Electric-Driven Combined Heating, Cooling, and Electricity System for an Office Building in Two Italian Cities. Energies 2020, 13, 895. [Google Scholar] [CrossRef] [Green Version]
- Vella, C.; Borg, S.P.; Micallef, D. The Effect of Shank-Space on the Thermal Performance of Shallow Vertical U-Tube Ground Heat Exchangers. Energies 2020, 13, 602. [Google Scholar] [CrossRef] [Green Version]
- Djorup, S.; Sperling, K.; Nielsen, S.; Ostergaard, P.A.; Thellufsen, J.Z.; Sorknaes, P.; Lund, H.; Drysdale, D. District Heating Tariffs, Economic Optimisation and Local Strategies during Radical Technological Change. Energies 2020, 13, 1172. [Google Scholar] [CrossRef] [Green Version]
- Pucko, Z.; Maucec, D.; Suman, N. Energy and Cost Analysis of Building Envelope Components Using BIM: A Systematic Approach. Energies 2020, 13, 2643. [Google Scholar] [CrossRef]
- Arnaiz-Del-Pozo, C.; Jiménez, Á.; Cloete, S.; Cloete, J.H.; Amini, S. Exergy Analysis of Gas Switching Chemical Looping IGCC Plants. Energies 2020, 13, 544. [Google Scholar] [CrossRef] [Green Version]
- Jozic, P.; Zidansek, A.; Repnik, R. Fuel Conservation for Launch Vehicles: Falcon Heavy Case Study. Energies 2020, 13, 660. [Google Scholar] [CrossRef] [Green Version]
- Jamaluddin, K.; Alwi, S.R.W.; Hamzah, K.; Klemeš, J.J. A Numerical Pinch Analysis Methodology for Optimal Sizing of a Centralized Trigeneration System with Variable Energy Demands. Energies 2020, 13, 2038. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, F.; Schlott, M.; Kies, A.; Stöcker, H. Flow Allocation in Meshed AC-DC Electricity Grids. Energies 2020, 13, 1233. [Google Scholar] [CrossRef] [Green Version]
- Calise, F.; Cappiello, F.L.; Vanoli, R.; Vicidomini, M. Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage. Appl. Energy 2019, 253, 253. [Google Scholar] [CrossRef]
- Calise, F.; D’Accadia, M.D.; Vanoli, R.; Vicidomini, M. Transient analysis of solar polygeneration systems including seawater desalination: A comparison between linear Fresnel and evacuated solar collectors. Energy 2019, 172, 647–660. [Google Scholar] [CrossRef]
- Calise, F.; D’Accadia, M.D.; Vicidomini, M.; Ferruzzi, G.; Vanoli, L. Design and Dynamic Simulation of a Combined System Integration Concentrating Photovoltaic/Thermal Solar Collectors and Organic Rankine Cycle. Am. J. Eng. Appl. Sci. 2015, 8, 100–118. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, W.; Calise, F.; Duić, N.; Østergaard, P.A.; Vicidomini, M.; Wang, Q. Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems. Energies 2020, 13, 5229. https://doi.org/10.3390/en13195229
Chu W, Calise F, Duić N, Østergaard PA, Vicidomini M, Wang Q. Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems. Energies. 2020; 13(19):5229. https://doi.org/10.3390/en13195229
Chicago/Turabian StyleChu, Wenxiao, Francesco Calise, Neven Duić, Poul Alberg Østergaard, Maria Vicidomini, and Qiuwang Wang. 2020. "Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems" Energies 13, no. 19: 5229. https://doi.org/10.3390/en13195229
APA StyleChu, W., Calise, F., Duić, N., Østergaard, P. A., Vicidomini, M., & Wang, Q. (2020). Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems. Energies, 13(19), 5229. https://doi.org/10.3390/en13195229