Effect of Non-Condensable Gasses on the Performance of a Vacuum Thermochemical Reactor
Abstract
:1. Introduction
- Adsorbed gases at the surface of the TCM grains (i.e., N, CO and O by zeolite and silica gel [26]).
- Dissolved gases in water (i.e., N, CO and O).
- Leakage from gasses into the setup (especially N and O).
- Any other emission source, e.g., stabilizing material, glues, coatings and sealing.
2. Materials and Methods
2.1. Experimental Setup
2.2. Dissolved Non-Condensable Gasses in Water
2.3. Leakage Rate
2.4. Experimental Approach
3. A Mathematic Model on Evaporation/Condensation with NCG
3.1. Mass Transport of the Gases
3.2. Momentum and Heat Transport
3.3. Boundary Conditions
4. Results
4.1. Experiment 1: Single Condensation Process with Controlled Amount of NCG
4.1.1. Experiment 1A: Cyclic Experiments with Initially Anhydrous KCO
4.1.2. Experiment 1B: Cyclic Experiments with Initially Hydrated KCO
4.2. Experiment 2A: Single Condensation Process with Controlled Amount of NCG
Experiment 2B: Single Condensation Process without Artificial Added NCG
4.3. Single Condensation Process with Artificial Added NCG
4.4. Experiment 3: Cyclic Condensation/Evaporation with Water
4.5. Numerical Model of a Condensor/Evaporator with NCG
4.5.1. Evaporation Rate with NCG
4.5.2. Constant Leakage as Source of NCG
4.5.3. The Roles of Experimental System Parameters on the Evaporation/Condensation Rate in a System with NCG
4.6. Design of the System
4.7. Practical Implication
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Donkers, P.; Sögütoglu, L.; Huinink, H.; Fischer, H.; Adan, O. A review of salt hydrates for seasonal heat storage in domestic applications. Appl. Energy 2017, 199, 45–68. [Google Scholar] [CrossRef]
- Donkers, P.; Pel, L.; Steiger, M.; Adan, O. Deammoniation and ammoniation processes with ammonia. AIMS Energy 2016, 4, 936–950. [Google Scholar] [CrossRef]
- N’Tsoukpoe, K.; Schmidt, T.; Rammelberg, H.; Watts, B.; Ruck, W. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage. Appl. Energy 2014, 124, 1–16. [Google Scholar] [CrossRef]
- Yan, T.; Wang, R.; Li, T.; Wang, L.; Fred, I. A review of promising candidate reactions for chemical heat storage. Renew. Sustain. Energy Rev. 2015, 43, 13–31. [Google Scholar] [CrossRef]
- Kousksou, T.; Bruel, P.; Jamil, A.; El Rhafiki, T.; Zeraouli, Y. Energy storage: Applications and challenges. Sol. Energy Mater. Sol. Cells 2014, 120, 59–80. [Google Scholar] [CrossRef]
- Sapienza, A.; Frazzica, A.; Freni, A.; Aristov, Y. Dramatic effect of residual gas on dynamics of isobaric adsorption stage of an adsorptive chiller. Appl. Therm. Eng. 2016, 96, 385–390. [Google Scholar] [CrossRef]
- Okunev, B.; Gromov, A.; Zelenko, V.; Glaznev, L.; Ovoshchnikov, D.; Heifets, L.; Aristov, Y. Effect of residual gas on the dynamics of water adsorption under isobaric stages of adsorption heat pumps: Mathematical modelling. Int. J. Heat Mass Transf. 2010, 53, 1283–1289. [Google Scholar] [CrossRef]
- Glaznev, I.; Aristov, Y. Kinetics of water adsorption on loose grains of SWS-1L under isobaric stages of adsorption heat pumps: The effect of residual air. Int. J. Heat Mass Transf. 2008, 51, 5823–5827. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, J.; Wang, L. Review of vapor condensation heat and mass transfer in the presence of non-condensable gas. Appl. Therm. Eng. 2015, 89, 469–484. [Google Scholar] [CrossRef]
- Yi, Q.; Tian, M.; Yan, W.; Qu, X.; Chen, X. Visualization study of the influence of non-condensable gas on steam condensation heat transfer. Appl. Therm. Eng. 2016, 106, 13–21. [Google Scholar] [CrossRef]
- Wu, X.; Li, T.; Li, Q.; Chu, F. Approximate equations for film condensation in the presence of non-condensable gases. Int. Commun. Heat Mass Transf. 2017, 85, 124–130. [Google Scholar] [CrossRef]
- Cao, J.; Pei, G.; Bottarelli, M.; Chen, C.; Jiao, D.; Li, J. Effect of non-condensable gas on the behaviours of a controllable loop thermosyphon under active control. Appl. Therm. Eng. 2019, 146, 288–294. [Google Scholar] [CrossRef]
- Lee, K.-L.; Kadambi, J.; Kamotani, Y. The influence of non-condensable gas on an integral planar heat pipe radiators for space applications. Int. J. Heat Mass Transf. 2017, 110, 496–505. [Google Scholar] [CrossRef]
- Wu, X.; Chu, F.; Zhu, Y.; Li, Q. Vapor free convection film condensation heat transfer in the presence of non-condensable gases with smaller molecular weights than the vapor. Appl. Therm. Eng. 2018, 130, 1611–1618. [Google Scholar] [CrossRef]
- Yin, Z.; Wen, J.; Wu, Y.; Wang, Q.; Zeng, M. Effect of non-condensable gas on laminar film condensation of steam in horizontal minichannels with different cross-sectional shapes. Int. Commun. Heat Mass Transf. 2016, 70, 127–131. [Google Scholar] [CrossRef]
- He, J.; Miao, J.; Bai, L.; Lin, G.; Zhang, H.; Wen, D. Effect of non-condensable gas on the startup of a loop heat pipe. Appl. Therm. Eng. 2017, 111, 1507–1516. [Google Scholar] [CrossRef]
- Cai, J.; Jo, B.; Erkan, N.; Okamoto, K. Effect of non-condensable gas on thermal stratification and flow patterns in suppression pool. Nucl. Eng. Des. 2016, 300, 117–126. [Google Scholar] [CrossRef]
- De Jong, A.J.; Stevens, R.; Rentrop, C.; Hoegaerts, C. Coatings for Heat Storage Reactors with Hygroscopic Salts. Energy Procedia 2015, 70, 182–192. [Google Scholar] [CrossRef] [Green Version]
- N’Tsoukpoe, K.; Liu, N.; Le Pierres, N.; Luo, L. A review on long-term sorption solar energy storage. Renew. Sustain. Energy Rev. 2009, 13, 2385–2396. [Google Scholar] [CrossRef]
- Cot-Gores, J.; Castell, A.; Cabeza, L. Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions. Renew. Sustain. Energy Rev. 2012, 16, 5207–5224. [Google Scholar] [CrossRef]
- De Jong, A.-J.; Trausel, F.; Finck, C.; Van Vliet, L.; Cuypers, R. Thermochemical heat storage System design issues. Energy Procedia 2014, 48, 309–319. [Google Scholar] [CrossRef] [Green Version]
- De Boer, R.; Haije, W.; Veldhuis, J.; Smeding, S. Solid-Sorption Cooling With Integrated Thermal Storage: The SWEAT Prototype. Int. Conf. Heat Powered Cycles 2004, 8. [Google Scholar]
- Daguenet-Frick, X.; Gantenbein, E.; Frank, E.; Fumey, B.; Weber, R. Development of a numerical model for the reaction zone design of an aqueous sodium hydroxide seasonal thermal energy storage. Sol. Energy 2013, 121, 17–30. [Google Scholar] [CrossRef]
- Ferchaud, C. Experimental Study of Salt Hydrates for Thermochemical Seasonal Heat Storage. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2016. [Google Scholar]
- Sögütoglu, L.; Donkers, P.; Fischer, H.; Huinink, H.; Adan, O. In-depth investigation of thermochemical performance in a heat battery: Cyclic analysis of K2CO3, MgCl2 and Na2S. Appl. Energy 2018, 215, 159–173. [Google Scholar] [CrossRef]
- Sircar, S.; Kumar, R. Non-isothermal Surface Barrier Model for Gas Sorption Kinetics on Porous Adsorbents. J. Chem. Soc. Faraday Trans. 1 1984, 80, 2489–2507. [Google Scholar] [CrossRef]
- Sander, R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 2015, 15, 4399–4981. [Google Scholar] [CrossRef] [Green Version]
- Shen, C. Rarefied Gas Dynamics: Fundamentals, Simulations and Micro Flows; Springer: Heidelberg, Germany, 2005. [Google Scholar]
- Fang, G.; Ward, C. Temperature measured close to the interface of an evaporating liquid. Phys. Rev. E 1999, 59, 417–428. [Google Scholar] [CrossRef]
- Ward, C.; Stanga, D. Interfacial conditions during evaporation or condensation of water. Phys. Rev. E 1999, 64, 501–509. [Google Scholar]
- Badam, V.; Kumar, V.; Durst, F.; Danov, K. Experimental and theoretical investigations on interfacial temperature jumps during evaporation. Exp. Therm. Fluid Sci. 2007, 32, 276–292. [Google Scholar] [CrossRef]
- Knudsen, M.; Partington, J. The kinetic theory of gases: Some modern aspects. J. Phys. Chem. 1953, 39, 307. [Google Scholar] [CrossRef]
- Schrage, R. A Theorectical Study of Interphase Mass Transfer; Columbia University Press: New York, NY, USA, 1953. [Google Scholar]
- Marek, R.; Straub, J. Analysis of the evaporation coefficient and the condensation coefficient of water. Int. J. Heat Mass Transf. 2001, 44, 39–53. [Google Scholar] [CrossRef]
- Wang, H.; Garimella, S.V.; Murthy, J.Y. Characteristics of evaporating thin film in a microchannel. Int. J. Heat Mass Transf. 2007, 50, 3933–3942. [Google Scholar] [CrossRef] [Green Version]
- Kharangate, C.; Lee, H.; Mudawar, I. Computational modeling of turbulent evaporating falling films. Int. J. Heat Mass Transf. 2015, 81, 52–62. [Google Scholar] [CrossRef]
- Kharangate, C.; Mudawar, I. Review of computational studies on boiling and condensation. Int. J. Heat Mass Transf. 2017, 108, 1164–1196. [Google Scholar] [CrossRef]
- Bond, M.; Struchtrup, H. Mean evaporation and condensation coefficients based on energy dependent condensation probability. Phys. Rev. E 2004, 70, 601–605. [Google Scholar] [CrossRef] [Green Version]
- Kryukov, A.; Levashov, V. About evaporation-condensation coefficients on the vapor-liquid interface of high thermal conductivity matters. Int. J. Heat Mass Transf. 2011, 54, 3042–3048. [Google Scholar] [CrossRef]
- Popov, S.; Melling, A.; Durst, F.; Ward, C. Apparatus for investigation of evaporation at free liquid-vapour interfaces. Int. J. Heat Mass Transf. 2005, 48, 2299–2309. [Google Scholar] [CrossRef]
- Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena, 2nd ed.; John Wiley and Sons: New York, NY, USA; Chichester, UK, 1924. [Google Scholar]
- Houben, J.; Huinink, H.; Sögütoglu, L.; Donkers, P.; Adan, O. K2CO3 a Suitable Material for Closed Heat Storage Systems. Energy 2019. submitted. [Google Scholar]
T | 37 C |
T | 45 C |
P | 61.5 mbar |
R | |
@ 61.5 mbar | |
(0.975·T − 29.425) × 10 | |
D | 40.5 mm |
D | 4 mm |
L | 83.9 mm |
L | 173.9 mm |
L | 930 mm |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donkers, P.; Gao, K.; Houben, J.; Huinink, H.; Erich, B.; Adan, O. Effect of Non-Condensable Gasses on the Performance of a Vacuum Thermochemical Reactor. Energies 2020, 13, 362. https://doi.org/10.3390/en13020362
Donkers P, Gao K, Houben J, Huinink H, Erich B, Adan O. Effect of Non-Condensable Gasses on the Performance of a Vacuum Thermochemical Reactor. Energies. 2020; 13(2):362. https://doi.org/10.3390/en13020362
Chicago/Turabian StyleDonkers, Pim, Kun Gao, Jelle Houben, Henk Huinink, Bart Erich, and Olaf Adan. 2020. "Effect of Non-Condensable Gasses on the Performance of a Vacuum Thermochemical Reactor" Energies 13, no. 2: 362. https://doi.org/10.3390/en13020362
APA StyleDonkers, P., Gao, K., Houben, J., Huinink, H., Erich, B., & Adan, O. (2020). Effect of Non-Condensable Gasses on the Performance of a Vacuum Thermochemical Reactor. Energies, 13(2), 362. https://doi.org/10.3390/en13020362