Explicit Multipole Formula for the Local Thermal Resistance in an Energy Pile—The Line-Source Approximation
Abstract
:1. Introduction
2. Energy Pile with Pipes Equally Spaced on a Circle
3. The Multipole Method Applied to the Energy Pile
3.1. Temperature Field from the N Line Heat Sources
- Laplace equation in the pile and ground regions,
- The heat flux of q0 (W/m) from each pipe,
- The internal boundary conditions of continuous temperature at the pile periphery,
- The internal boundary conditions of continuous radial heat flux at the pile periphery (the thermal conductivity is λb in the pile region and λ in the outside ground),
- The average temperature of Tbav at the pile periphery.
3.2. Boundary Condition at the Pipes
3.3. Mean Temperature at the Outer Periphery of the Pipes
4. Thermal Resistance of the Energy Pile
4.1. The Thermal Resistance Rb0 as a Function of rc
4.2. Minimum Thermal Resistance for rc = rb − rp
5. Formulas and Graphs for the Temperature Field
5.1. Reference Case
5.2. Plots of the Temperature Field
6. Total Radial Heat Flux: Thermal Resistance to Any Radius r > rb
7. Deviation from the Exact Boundary Condition at the Pipes
8. Comparison with Exact Results from Multipoles Solutions of Order J = 8
8.1. Error for Rb (J) as a Function of J
8.2. Relative Error ∆Rb0 (N, rb, rc, rp, σ, β) for a Suitable Set of Parameter Values
9. Further Discussion and Concluding Summary
Author Contributions
Funding
Conflicts of Interest
Nomenclature
hp | Heat transfer coefficient between fluid and outer side of pipe wall, W/(m2·K), see Equation (19) |
J | Number of multipoles, J = 0, 1, 2 … |
N | Number of pipes in the energy pile; N = 2 for single U-tube |
q0 | Heat rejection rate from each pipe to the ground, W/m |
Rb | Local thermal resistance between fluid in the U-tube to the energy pile wall, (m·K)/W |
Rb0 | Local thermal resistance for the zero-order, (m·K)/W, see Equation (31) |
Rbmin | Minimum local thermal resistance, (m·K)/W, see Equation (38) |
Rp | Total fluid-to-pipe resistance for a single pipe i.e., one leg of the U-tube, (m·K)/W |
rb | Radius of the energy pile, m |
rc | Radius of the concentric circle, m, see Figure 2 |
rp | Outer radius of heat exchanger pipe, m |
T | Temperature, °C |
Tb | Energy pile wall temperature, °C |
Tbav | Average temperature at the energy pile wall, °C |
Tf | Mean fluid temperature inside the U-tube, °C |
β | Dimensionless thermal resistance of one U-tube leg, see Equation (2) |
∆Rb0 | Relative error in local thermal resistance for zero-order, % |
λ | Thermal conductivity of the ground, W/(m·K) |
λb | Thermal conductivity of the energy pile, W/(m·K) |
σ | Thermal conductivity ratio, dimensionless, see Equation (2) |
Appendix A. Detailed Mathematical Derivations for the Temperature Field
Appendix A.1. Complex-Valued Line Heat Source
Appendix A.2. Temperature Field from N Line Heat Sources on a Circle
Appendix A.3. New Formulas for the Temperature Field
References
- Rees, S. (Ed.) Advances in Ground-Source Heat Pump Systems; Woodhead Publishing: Cambridge, UK, 2016. [Google Scholar]
- Garber, D.; Choudhary, R.; Soga, K. Risk Based Lifetime Costs Assessment of a Ground Source Heat Pump (GSHP) System Design: Methodology and Case Study. Build. Environ. 2013, 60, 66–80. [Google Scholar] [CrossRef]
- Rivoire, M.; Casasso, A.; Piga, B.; Sethi, R. Assessment of Energetic, Economic and Environmental Performance of Ground-Coupled Heat Pumps. Energies 2018, 11, 1941. [Google Scholar] [CrossRef] [Green Version]
- Vieira, A.; Alberdi-Pagola, M.; Christodoulides, P.; Javed, S.; Loveridge, F.; Nguyen, F.; Cecinato, F.; Maranha, J.; Florides, G.; Prodan, I.; et al. Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications. Energies 2017, 10, 2044. [Google Scholar] [CrossRef] [Green Version]
- Loveridge, F.; Powrie, W. Temperature response functions (G-functions) for single pile heat exchangers. Energy 2013, 57, 554–564. [Google Scholar] [CrossRef]
- Loveridge, F.; Powrie, W.; Nicholson, D. Comparison of two different models for pile thermal response test interpretation. Acta Geotech. 2014, 9, 367–384. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Lee, S.R.; Yoon, S.; Choi, J.C. Evaluation of thermal response and performance of PHC energy pile: Field experiments and numerical simulation. Appl. Energy 2013, 103, 12–24. [Google Scholar] [CrossRef]
- Lamarche, L.; Kajl, S.; Beauchamp, B. A review of methods to evaluate borehole thermal resistances in geothermal heat-pump systems. Geothermics 2010, 39, 187–200. [Google Scholar] [CrossRef]
- Javed, S.; Spitler, J.D. Calculation of borehole thermal resistance. In Advances in Ground-Source Heat Pump Systems, 1st ed.; Rees, S.J., Ed.; Woodhead Publishing: Cambridge, UK, 2016; pp. 63–95. [Google Scholar]
- Javed, S.; Spitler, J.D. Accuracy of borehole thermal resistance calculation methods for grouted single U-tube ground heat exchangers. Appl. Energy 2017, 187, 790–806. [Google Scholar] [CrossRef]
- Loveridge, F.; Powrie, W. 2D thermal resistance of pile heat exchangers. Geothermics 2014, 50, 122–135. [Google Scholar] [CrossRef]
- Paul, N.D. The Effect of Grout Thermal Conductivity on Vertical Geothermal Heat Exchanger Design and Performance. Master’s Thesis, South Dakota University, Brookings, SD, USA, July 1996. [Google Scholar]
- Sharqawy, M.H.; Mokheimer, E.M.; Badr, H.M. Effective pipe-to-borehole thermal resistance for vertical ground heat exchangers. Geothermics 2009, 38, 271–277. [Google Scholar] [CrossRef]
- Bauer, D.; Heidemann, W.; Müller-Steinhagen, H.; Diersch, H.J. Thermal resistance and capacity models for borehole heat exchangers. Int. J. Energy Res. 2011, 35, 312–320. [Google Scholar] [CrossRef]
- Diao, N.R.; Zeng, H.Y.; Fang, Z.H. Improvement in modeling of heat transfer in vertical ground heat exchangers. HVAC R Res. 2004, 10, 459–470. [Google Scholar] [CrossRef]
- Bennet, J.; Claesson, J.; Hellström, G. Multipole Method to Compute the Conductive Heat Flows to and between Pipes in a Composite Cylinder; Notes on Heat Transfer 3; University of Lund: Lund, Sweden, 1987. [Google Scholar]
- Earth Energy Designer (EED), Version 4.2; BLOCON: Lund, Sweden, 2019.
- Ground Loop Heat Exchanger Professional (GLHEPro), Version 5.0; International Ground Source Heat Pump Association (IGSHPA): Stillwater, OK, USA, 2016.
- Claesson, J.; Hellström, G. Multipole method to calculate borehole thermal resistances in a borehole heat exchanger. HVAC R Res. 2011, 17, 895–911. [Google Scholar]
- Claesson, J.; Javed, S. Explicit multipole formulas for calculating thermal resistance of single U-tube ground heat exchangers. Energies 2018, 11, 214. [Google Scholar] [CrossRef] [Green Version]
- Claesson, J.; Javed, S. Explicit multipole formulas and thermal network models for calculating thermal resistances of double U-pipe borehole heat exchangers. Sci. Technol. Built Environ. 2019, 25, 980–992. [Google Scholar] [CrossRef] [Green Version]
- Nehari, Z. Introduction to Complex Analysis; Allen and Bacon Inc.: Boston, MA, USA, 1961. [Google Scholar]
rb (mm) | σ | β | Close | Moderate | Wide | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 4 | 6 | 8 | 10 | 12 | 2 | 4 | 6 | 8 | 10 | 12 | 2 | 4 | 6 | 8 | 10 | 12 | |||
80 | −0.33 | 0.25 | 5 | 13 | 17 | 21 | 31 | 65 | 2 | 8 | 17 | 25 | 33 | n/a | 3 | 12 | 27 | 46 | 65 | 85 |
0.50 | 3 | 7 | 9 | 12 | 16 | 28 | 1 | 4 | 8 | 12 | 16 | n/a | 1 | 5 | 11 | 18 | 26 | 32 | ||
1.00 | 0 | 0 | 0 | −1 | −1 | −2 | 0 | 0 | 0 | 0 | −1 | n/a | 0 | 0 | 0 | 0 | −1 | −2 | ||
2.00 | −3 | −8 | −10 | −13 | −16 | −21 | 0 | −2 | −5 | −9 | −15 | n/a | −1 | −2 | −5 | −9 | −14 | −21 | ||
0.00 | 0.25 | 5 | 13 | 17 | 21 | 31 | 64 | 1 | 7 | 16 | 25 | 33 | n/a | 1 | 8 | 22 | 41 | 61 | 82 | |
0.50 | 3 | 7 | 9 | 12 | 16 | 28 | 0 | 3 | 8 | 12 | 16 | n/a | 0 | 3 | 9 | 17 | 25 | 32 | ||
1.00 | 0 | 0 | 0 | −1 | −1 | −2 | 0 | 0 | 0 | 0 | −1 | n/a | 0 | 0 | 0 | 0 | −1 | −2 | ||
2.00 | −3 | −8 | −10 | −13 | −16 | −21 | 0 | −2 | −5 | −9 | −15 | n/a | 0 | −2 | −5 | −9 | −14 | −21 | ||
0.33 | 0.25 | 5 | 13 | 17 | 21 | 31 | 63 | 0 | 7 | 16 | 25 | 33 | n/a | 0 | 5 | 18 | 37 | 58 | 79 | |
0.50 | 3 | 7 | 9 | 12 | 16 | 27 | 0 | 3 | 8 | 12 | 16 | n/a | 0 | 2 | 8 | 16 | 24 | 31 | ||
1.00 | 0 | 0 | 0 | −1 | −1 | −2 | 0 | 0 | 0 | 0 | −1 | n/a | 0 | 0 | 0 | 0 | −1 | −2 | ||
2.00 | −3 | −8 | −10 | −13 | −16 | −21 | 0 | −2 | −5 | −9 | −15 | n/a | 0 | −1 | −4 | −8 | −14 | −21 | ||
150 | −0.33 | 0.25 | 3 | 8 | 9 | 9 | 9 | 10 | 0 | 2 | 4 | 6 | 8 | 9 | 2 | 4 | 9 | 14 | 21 | 29 |
0.50 | 2 | 5 | 5 | 5 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 4 | 6 | 9 | 12 | ||
1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
2.00 | −2 | −6 | −7 | −7 | −8 | −8 | 0 | −1 | −2 | −3 | −5 | −7 | 0 | −1 | −2 | −3 | −4 | −5 | ||
0.00 | 0.25 | 3 | 8 | 9 | 9 | 9 | 10 | 0 | 2 | 4 | 6 | 8 | 9 | 0 | 1 | 4 | 9 | 16 | 23 | |
0.50 | 2 | 5 | 5 | 5 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 0 | 1 | 2 | 4 | 7 | 10 | ||
1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
2.00 | −2 | −6 | −7 | −7 | −8 | −8 | 0 | −1 | −2 | −3 | −5 | −7 | 0 | 0 | −1 | −2 | −3 | −5 | ||
0.33 | 0.25 | 3 | 8 | 9 | 9 | 9 | 10 | 0 | 2 | 4 | 6 | 8 | 9 | 0 | 0 | 2 | 6 | 12 | 19 | |
0.50 | 2 | 5 | 5 | 5 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 0 | 0 | 1 | 3 | 5 | 9 | ||
1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
2.00 | −2 | −6 | −7 | −7 | −8 | −8 | 0 | −1 | −2 | −3 | −5 | −7 | 0 | 0 | −1 | −1 | −3 | −4 | ||
300 | −0.33 | 0.25 | 3 | 5 | 6 | 5 | 5 | 5 | 0 | 0 | 1 | 1 | 2 | 2 | 1 | 2 | 3 | 5 | 7 | 9 |
0.50 | 1 | 3 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 4 | ||
1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
2.00 | −2 | −5 | −5 | −5 | −5 | −5 | 0 | 0 | 0 | 0 | −1 | −1 | 0 | −1 | −1 | −1 | −1 | −2 | ||
0.00 | 0.25 | 3 | 5 | 6 | 5 | 5 | 5 | 0 | 0 | 1 | 1 | 2 | 2 | 0 | 0 | 1 | 2 | 3 | 5 | |
0.50 | 1 | 3 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 2 | ||
1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
2.00 | −2 | −5 | −5 | −5 | −5 | −5 | 0 | 0 | 0 | 0 | −1 | −1 | 0 | 0 | 0 | 0 | −1 | −1 | ||
0.33 | 0.25 | 3 | 5 | 6 | 5 | 5 | 5 | 0 | 0 | 1 | 1 | 2 | 2 | 0 | 0 | 0 | 0 | 1 | 2 | |
0.50 | 1 | 3 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | ||
1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
2.00 | −2 | −5 | −5 | −5 | −5 | −5 | 0 | 0 | 0 | 0 | −1 | −1 | 0 | 0 | 0 | 0 | 0 | −1 | ||
600 | −0.33 | 0.25 | 2 | 4 | 4 | 4 | 4 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 |
0.50 | 1 | 3 | 3 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | ||
1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
2.00 | −2 | −4 | −4 | −4 | −4 | −4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −1 | −1 | −1 | ||
0.00 | 0.25 | 2 | 4 | 4 | 4 | 4 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | |
0.50 | 1 | 3 | 3 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
2.00 | −2 | −4 | −4 | −4 | −4 | −4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0.33 | 0.25 | 2 | 4 | 4 | 4 | 4 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
0.50 | 1 | 3 | 3 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
2.00 | −2 | −4 | −4 | −4 | −4 | −4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
1200 | −0.33 | 0.25 | 2 | 3 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 |
0.50 | 1 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | ||
1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
2.00 | −1 | −3 | −3 | −3 | −3 | −3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0.00 | 0.25 | 2 | 3 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
0.50 | 1 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
2.00 | −1 | −3 | −3 | −3 | −3 | −3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0.33 | 0.25 | 2 | 3 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
0.50 | 1 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
2.00 | −1 | −3 | −3 | −3 | −3 | −3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
rb (mm) | σ | β | Close | Moderate | Wide | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 4 | 6 | 8 | 10 | 12 | 2 | 4 | 6 | 8 | 10 | 12 | 2 | 4 | 6 | 8 | 10 | 12 | |||
150 | −0.33 | 0.25 | 3 | 7 | 7 | 7 | 7 | 7 | 0 | 1 | 2 | 3 | 5 | 6 | 1 | 3 | 6 | 9 | 14 | 19 |
0.50 | 2 | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 1 | 2 | 3 | 3 | 1 | 1 | 2 | 4 | 6 | 8 | ||
1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
2.00 | −2 | −5 | −6 | −6 | −7 | −7 | 0 | 0 | −1 | −1 | −2 | −3 | 0 | −1 | −1 | −2 | −3 | −3 | ||
0.00 | 0.25 | 3 | 7 | 7 | 7 | 7 | 7 | 0 | 1 | 2 | 3 | 5 | 6 | 0 | 1 | 2 | 5 | 9 | 13 | |
0.50 | 2 | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 1 | 2 | 3 | 3 | 0 | 0 | 1 | 2 | 4 | 6 | ||
1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
2.00 | −2 | −5 | −6 | −6 | −7 | −7 | 0 | 0 | −1 | −1 | −2 | −3 | 0 | 0 | −1 | −1 | −2 | −3 | ||
0.33 | 0.25 | 3 | 7 | 7 | 7 | 7 | 7 | 0 | 1 | 2 | 3 | 5 | 6 | 0 | 0 | 1 | 2 | 5 | 10 | |
0.50 | 2 | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 1 | 2 | 2 | 3 | 0 | 0 | 0 | 1 | 3 | 4 | ||
1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
2.00 | −2 | −5 | −6 | −6 | −7 | −7 | 0 | 0 | −1 | −1 | −2 | −3 | 0 | 0 | 0 | −1 | −1 | −2 |
rb (mm) | σ | β | Close | Moderate | Wide | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 4 | 6 | 8 | 10 | 12 | 2 | 4 | 6 | 8 | 10 | 12 | 2 | 4 | 6 | 8 | 10 | 12 | |||
300 | −0.33 | 0.25 | 3 | 6 | 6 | 6 | 6 | 6 | 0 | 1 | 1 | 2 | 3 | 4 | 1 | 3 | 4 | 7 | 9 | 13 |
0.50 | 1 | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 3 | 4 | 5 | ||
1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
2.00 | −2 | −5 | −5 | −6 | −6 | −6 | 0 | 0 | 0 | −1 | −1 | −2 | 0 | −1 | −1 | −1 | −2 | −2 | ||
0.00 | 0.25 | 3 | 6 | 6 | 6 | 6 | 6 | 0 | 1 | 1 | 2 | 3 | 4 | 0 | 0 | 1 | 3 | 5 | 8 | |
0.50 | 1 | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 1 | 1 | 2 | 2 | 0 | 0 | 1 | 1 | 2 | 4 | ||
1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
2.00 | −2 | −5 | −5 | −6 | −6 | −6 | 0 | 0 | 0 | −1 | −1 | −2 | 0 | 0 | 0 | −1 | −1 | −2 | ||
0.33 | 0.25 | 3 | 6 | 6 | 6 | 6 | 6 | 0 | 1 | 1 | 2 | 3 | 4 | 0 | 0 | 0 | 1 | 2 | 5 | |
0.50 | 1 | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 1 | 1 | 2 | 2 | 0 | 0 | 0 | 0 | 1 | 2 | ||
1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
2.00 | −2 | −5 | −5 | −6 | −6 | −6 | 0 | 0 | 0 | −1 | −1 | −2 | 0 | 0 | 0 | 0 | −1 | −1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Claesson, J.; Javed, S. Explicit Multipole Formula for the Local Thermal Resistance in an Energy Pile—The Line-Source Approximation. Energies 2020, 13, 5445. https://doi.org/10.3390/en13205445
Claesson J, Javed S. Explicit Multipole Formula for the Local Thermal Resistance in an Energy Pile—The Line-Source Approximation. Energies. 2020; 13(20):5445. https://doi.org/10.3390/en13205445
Chicago/Turabian StyleClaesson, Johan, and Saqib Javed. 2020. "Explicit Multipole Formula for the Local Thermal Resistance in an Energy Pile—The Line-Source Approximation" Energies 13, no. 20: 5445. https://doi.org/10.3390/en13205445
APA StyleClaesson, J., & Javed, S. (2020). Explicit Multipole Formula for the Local Thermal Resistance in an Energy Pile—The Line-Source Approximation. Energies, 13(20), 5445. https://doi.org/10.3390/en13205445