Effect of Concentration on the Charge Storage Kinetics of Nanostructured MnO2 Thin-Film Supercapacitors Synthesized by the Hydrothermal Method
Abstract
:1. Introduction
2. Experimental Details
2.1. Reagents and Materials
2.2. Synthesis of MnO2 Thin Films
2.3. Characterization of the Prepared Samples
3. Results and Discussion
3.1. X-ray Diffraction (XRD)
3.2. Photoluminescence (PL)
3.3. X-ray Photoelectron Spectroscopy (XPS)
3.4. Field Emission Scanning Electron Microscopy (FESEM)
3.5. Growth Mechanism of MnO2 Thin Films
3.6. Surface Adsorption De-Adsorption
3.7. Electrochemical Measurements
3.7.1. Cyclic Voltammetry (CV)
3.7.2. Galvanostatic Charge–Discharge (GCD)
3.7.3. Stability
3.7.4. Electrochemical Impedance Spectroscopy (EIS)
3.7.5. Storage Kinetics Studies Using CV plot
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, F.; Xiao, F.; Dong, Z.H.; Shi, W. Synthesis of polypyrrole wrapped graphene hydrogels composites as supercapacitor electrodes. Electrochim. Acta 2013, 114, 125–132. [Google Scholar]
- Ng, K.C.; Zhang, S.; Peng, C.; Chen, G.Z. Individual and Bipolarly Stacked Asymmetrical Aqueous Supercapacitors of CNTs/SnO2 and CNTs/MnO2 Nanocomposites. J. Electrochem. Soc. 2009, 156, A846–A853. [Google Scholar]
- Conway, B.E. Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications; Kluwer Acadamic/Plenum Publisher: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Yiǧit, D.; Güngör, T.; Güllü, M. Poly(thieno[3,4-b][1,4]dioxine) and poly([1,4]dioxino[2,3-c]pyrrole) derivatives: P- and n-dopable redox-active electrode materials for solid state supercapacitor applications. Org. Electron. Phys. Mater. Appl. 2013, 14, 3249–3259. [Google Scholar]
- Wu, C.H.; Hung, Y.H.; Hong, C.W. On-line supercapacitor dynamic models for energy conversion and management. Energy Convers. Manag. 2012, 53, 337–345. [Google Scholar]
- Vural, B.; Boynuegri, A.R.; Nakir, I.; Erdinc, O.; Balikci, A.; Uzunoglu, M.; Gorgun, H.; Dusmez, S. Fuel cell and ultra-capacitor hybridization: A prototype test bench based analysis of different energy management strategies for vehicular applications. Int. J. Hydrogen Energy 2010, 35, 11161–11171. [Google Scholar]
- Wei, W.; Cui, X.; Chen, W.; Ivey, D.G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697–1721. [Google Scholar]
- Desai, B.D.; Fernandes, J.B.; Dalal, V.N.K. Manganese dioxide—A review of a battery chemical Part II. Solid state and electrochemical properties of manganese dioxides. J. Power Sources 1985, 16, 1–43. [Google Scholar]
- Simon, P.; Burke, A. Nanostructured carbons: Double-layer capacitance and more. Electrochem. Soc. Interface 2008, 17, 38–43. [Google Scholar]
- Jurewicz, K.; Vix-Guterl, C.; Frackowiak, E.; Saadallah, S.; Reda, M.; Parmentier, J.; Patarin, J.; Béguin, F. Capacitance properties of ordered porous carbon materials prepared by a templating procedure. J. Phys. Chem. Solids 2004, 65, 287–293. [Google Scholar]
- Fernández, J.A.; Morishita, T.; Toyoda, M.; Inagaki, M.; Stoeckli, F.; Centeno, T.A. Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors. J. Power Sources 2008, 175, 675–679. [Google Scholar]
- Sharma, P.; Bhatti, T.S. A review on electrochemical double-layer capacitors. Energy Convers. Manag. 2010, 51, 2901–2912. [Google Scholar]
- Arbizzani, C.; Mastragostino, M.; Meneghello, L. Polymer-based redox supercapacitors: A comparative study. Electrochim. Acta 1996, 41, 21–26. [Google Scholar]
- Patil, D.S.; Pawar, S.A.; Patil, P.S.; Kim, J.H.; Shin, J.C. Silver nanoparticles incorporated PEDOT-PSS electrodes for electrochemical supercapacitor. J. Nanosci. Nanotechnol. 2016, 16, 10625–10629. [Google Scholar]
- Mastragostino, M.; Arbizzani, C.; Soavi, F. Polymer-based supercapacitors. J. Power Sources 2001, 97–98, 812–815. [Google Scholar]
- Sakiyama, K.; Onishi, S.; Ishihara, K.; Orita, K.; Kajiyama, T.; Hosoda, N.; Hara, T. Deposition and properties of reactively sputtered ruthenium dioxide films. J. Electrochem. Soc. 1993, 140, 834–839. [Google Scholar]
- Audichon, T.; Napporn, T.W.; Canaff, C.; Morais, C.; Comminges, C.; Kokoh, K.B. IrO2 Coated on RuO2 as Efficient and Stable Electroactive Nanocatalysts for Electrochemical Water Splitting. J. Phys. Chem. C 2016, 120, 2562–2573. [Google Scholar]
- Chen, Y.M.; Cai, J.H.; Huang, Y.S.; Lee, K.Y.; Tsai, D.S. Preparation and characterization of iridium dioxide-carbon nanotube nanocomposites for supercapacitors. Nanotechnology 2011, 22, 115706. [Google Scholar]
- Yuan, C.; Zhang, X.; Su, L.; Gao, B.; Shen, L. Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J. Mater. Chem. 2009, 19, 5772–5777. [Google Scholar]
- Xu, J.; Cao, X.; Sun, L.; He, Y. Ordered mesoporous carbon/cobalt oxide composites as the electrode materials for supercapacitor. Adv. Mater. 2011, 239–242, 1026–1029. [Google Scholar]
- Liu, Y.; Jiao, Y.; Zhang, Z.; Qu, F.; Umar, A.; Wu, X. Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl. Mater. Interfaces 2014, 6, 2174–2184. [Google Scholar]
- Qu, Q.; Zhang, P.; Wang, B.; Chen, Y.; Tian, S.; Wu, Y.; Holze, R. Electrochemical Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors. J. Phys. Chem. C 2009, 113, 14020–14027. [Google Scholar]
- Ghodbane, O.; Pascal, J.; Charles, I.; Montpellier, G.; Cnrs, U.M.R.; Aime, E. Microstructural Effects on Charge-Storage Properties in MnO2-Based Electrochemical. ACS Appl. Mater. Interfaces 2009, 1, 1130–1139. [Google Scholar] [PubMed]
- Miller, J.R.; Simon, P.; Patrice, S. Electrochemical Capacitors for Energy Management. Sci. Mag. 2008, 321, 651–652. [Google Scholar]
- Toupin, M.; Brousse, T.; Bélanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 2004, 16, 3184–3190. [Google Scholar]
- Reddy, R.N.; Reddy, R.G. Sol-gel MnO2 as an electrode material for electrochemical capacitors. J. Power Sources 2003, 124, 330–337. [Google Scholar]
- Wang, X.; Wang, X.; Huang, W.; Sebastian, P.J.; Gamboa, S. Sol-gel template synthesis of highly ordered MnO2 nanowire arrays. J. Power Sources 2005, 140, 211–215. [Google Scholar]
- Pang, S.C.; Anderson, M.A.; Chapman, T.W. Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. J. Electrochem. Soc. 2000, 147, 444–450. [Google Scholar]
- Hegde, A.C. Effect of surfactant on high capacitance of galvanostatically deposited MnO2. J. Electroanal. Chem. 2012, 676, 35–39. [Google Scholar]
- Boukmouche, N.; Azzouz, N.; Bouchama, L.; Daltin, A.L.; Chopart, J.P.; Bouznit, Y. Supercapacitance of MnO2 films prepared by pneumatic spray method. Mater. Sci. Semicond. Process. 2014, 27, 233–239. [Google Scholar]
- Subramanian, V.; Zhu, H.; Vajtai, R.; Ajayan, P.M.; Wei, B. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 2005, 109, 20207–20214. [Google Scholar]
- Al-falahi, A.H. Structural and Optical Properties of MnO2: Pb Nanocrystalline Thin Films Deposited by Chemical Spray Pyrolysis. OSRG J. Eng. 2013, 3, 52–57. [Google Scholar]
- Hsu, C.; Chang, S.J.; Lin, Y.R.; Li, P.C.; Lin, T.S.; Tsai, S.Y.; Lu, T.H.; Chen, I.C. Ultraviolet photodetectors with low temperature synthesized vertical ZnO nanowires. Chem. Phys. Lett. 2005, 416, 75–78. [Google Scholar]
- Qian, W.; Sun, F.; Xu, Y.; Qiu, L.; Liu, C.; Wang, S.; Yan, F. Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ. Sci. 2013, 7, 379–386. [Google Scholar]
- Fan, Z.; Yan, J.; Wei, T.; Zhi, L.; Ning, G.; Li, T.; Wei, F. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 2011, 21, 2366–2375. [Google Scholar]
- Lu, X.; Zheng, D.; Zhai, T.; Liu, Z.; Huang, Y.; Xie, S.; Tong, Y. Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy Environ. Sci. 2011, 4, 2915. [Google Scholar]
- Wang, B.; Li, H.; Liu, Q.; Wang, J.; Yu, L.; Yan, H.; Li, Z.; Wang, P. Optimizing the charge transfer process by designing Co3O4@PPy@MnO2 ternary core-shell composite. J. Mater. Chem. A 2014, 2, 12968–12973. [Google Scholar]
- Hsu, Y.-K.; Chen, Y.-C.; Lin, Y.-G.; Chen, L.-C.; Chen, K.-H. Birnessite-type manganese oxides nanosheets with hole acceptor assisted photoelectrochemical activity in response to visible light. J. Mater. Chem. 2012, 22, 2733. [Google Scholar]
- Chigane, M.; Ishikawa, M. Manganese Oxide Thin Film Preparation by Potentiostatic Electrolyses and Electrochromism. J. Electrochem. Soc. 2000, 147, 2246–2251. [Google Scholar]
- Hu, C.; Chen, E.; Lin, J. Capaciti v e and textural characteristics of polyaniline-platinum composite films. Electrochim. Acta 2002, 47, 2741–2749. [Google Scholar]
- Suntivich, J.; Gasteiger, A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 2011, 3, 546–550. [Google Scholar]
- Suntivich, J.; May, K.J.; Gasteiger, H.A.; Goodenough, J.B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385. [Google Scholar]
- Chem, K.; Wang, M.; Li, G.; He, Q.; Liu, J.; Li, F. Spherical α-MnO2 Supported on N-KB as Efficient Electrocatalyst for Oxygen Reduction in Al–Air Battery. Materials 2018, 11, 601–615. [Google Scholar]
- Hu, X.; Zhu, S.; Huang, H.; Zhang, J.; Xu, Y. Controllable synthesis and characterization of α-MnO2 nanowires. J. Cryst. Growth 2016, 434, 7–12. [Google Scholar]
- Li, D.; Leung, Y.H.; Djurišić, A.B.; Liu, Z.T.; Xie, M.H.; Gao, J.; Chan, W.K. CuO nanostructures prepared by a chemical method. J. Cryst. Growth 2005, 282, 105–111. [Google Scholar]
- Brunauer, S.; Deming, L.; Deming, W.; Teller, E. On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 1940, 62, 1723–1732. [Google Scholar]
- Rouquerolt, J.; Avnir, D.; Fairbridge, W.; Everett, D.H.; Haynes, J.H.; Pernicone, N.; Ramsay JD, F.; Sing KS, W.; Unger, K.K. Recommendations for the characterization of porous solids. Pure Appl. Chem. 1994, 66, 1739–1758. [Google Scholar]
- Sawangphruk, M.; Srimuk, P.; Chiochan, P.; Krittayavathananon, A.; Luanwuthi, S.; Limtrakul, J. High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper. Carbon 2013, 60, 109–116. [Google Scholar]
- Kuo, S.-L.; Wu, N.-L. Investigation of Pseudocapacitive Charge-Storage Reaction of MnO2⋅nH2O Supercapacitors in Aqueous Electrolytes. J. Electrochem. Soc. 2006, 153, A1317. [Google Scholar]
- Yin, B.; Zhang, S.; Jiang, H.; Qu, F.; Wu, X. Phase-controlled synthesis of polymorphic MnO2 structures for electrochemical energy storage. J. Mater. Chem. A 2015, 3, 5722–5729. [Google Scholar]
- Lee, H.Y.; Goodenough, J.B. Supercapacitor Behavior with KCl Electrolyte. J. Solid State Chem. 1999, 144, 220–223. [Google Scholar]
- Wang, Y.T.; Lu, A.H.; Zhang, H.L.; Li, W.C. Synthesis of Nanostructured mesoporous manganese oxides with three-dimensional frameworks and their application in supercapacitors. J. Phys. Chem. C 2011, 115, 5413–5421. [Google Scholar]
- Subramanian, V.; Zhu, H.; Wei, B. Nanostructured MnO2: Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material. J. Power Sources 2006, 159, 361–364. [Google Scholar]
- Zhang, X.; Zhao, D.; Zhao, Y.; Tang, P. High performance asymmetric supercapacitor based on MnO2 electrode in ionic liquid electrolyte. J. Mater. Chem. A 2013, 1, 3706–3712. [Google Scholar]
- Lang, X.; Hirata, A.; Fujita, T.; Chen, M. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 2011, 6, 232–236. [Google Scholar]
- Zhu, G.; Deng, L.; Wang, J.; Kang, L.; Liu, Z.H. Hydrothermal preparation and the capacitance of hierarchical MnO2 nanoflower. Colloids Surfaces A Physicochem. Eng. Asp. 2013, 434, 42–48. [Google Scholar]
- Toupin, M.; Brousse, T.; Belanger, D. Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide. Chem. Mater. 2002, 14, 3946–3952. [Google Scholar]
- Xiao, W.; Xia, H.; Fuh, J.; Lu, L. Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties. J. Power Sources 2009, 193, 935–938. [Google Scholar]
- Li, Y.; Xie, H.; Wang, J.; Chen, L. Preparation and electrochemical performances of α-MnO2 nanorod for supercapacitor. Mater. Lett. 2011, 65, 403–405. [Google Scholar]
- Qiu, K.; Lu, Y.; Zhang, D.; Cheng, J.; Yan, H.; Xu, J.; Liu, X.; Kim, J.K.; Luo, Y. Mesoporous, hierarchical core/shell structured ZnCo2O4/MnO2 nanocone forests for high-performance supercapacitors. Nano Energy 2015, 11, 687–696. [Google Scholar]
- Hung, C.; Lin, P.; Tseng, T. High energy density asymmetric pseudocapacitors fabricated by graphene/carbon nanotube/MnO2 plus carbon nanotubes nanocomposites electrode. J. Power Sources 2014, 259, 145–153. [Google Scholar]
- Kundu, M.; Liu, L. Direct growth of mesoporous MnO2 nanosheet arrays on nickel foam current collectors for high-performance pseudocapacitors. J. Power Sources 2013, 243, 676–681. [Google Scholar]
- Zhao, Y.; Jiang, P.; Xie, S.S. Short communication ZnO-template-mediated synthesis of three-dimensional coral-like MnO2 nanostructure for supercapacitors. J. Power Sources 2013, 239, 393–398. [Google Scholar]
- Xu, C.; Zhao, Y.; Yang, G.; Li, F.; Li, H. Mesoporous nanowire array architecture of manganese dioxide for electrochemical capacitor applications. Chem. Commun. 2009, 48, 7575–7577. [Google Scholar]
- Yang, S.; Yan, P.; Li, Y.; Cheng, K.; Ye, K.; Zhang, C.; Cao, D.; Wang, G.; Li, Q. Reduced graphene oxide decorated on MnO2 nanoflakes grown on C/TiO2 nanowire arrays for electrochemical energy storage. RSC Adv. 2015, 5, 87521–87527. [Google Scholar]
- Naoi, K.; Simon, P. New Materials and New Configurations for Advanced Electrochemical Capacitors. J. Electrochem. Soc. 2008, 17, 34–37. [Google Scholar]
- Yu, G.; Hu, L.; Liu, N.; Wang, H.; Vosgueritchian, M.; Yang, Y.; Cui, Y.; Bao, Z. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 2011, 11, 4438–4442. [Google Scholar]
- Lokhande, C.; Dubal, D.; Joo, O. Metal oxide thin film based supercapacitors. Curr. Appl. Phys. 2011, 11, 255–270. [Google Scholar]
- Ke, B.; Wang, J.; Li, D.; Zhao, S.; Luo, L.; Yu, L.; Hussain, S. Electrochemical properties of hollow MnO2 nanostructure: Synthesis and application. J. Mater. Sci. Mater. Electron. 2016, 1–8, 418–425. [Google Scholar]
- Qu, D. The study of the proton diffusion process in the porous MnO2 electrode. Electrochim. Acta 2004, 49, 657–665. [Google Scholar]
- Aravinda, L.S.; Nagaraja, K.K.; Nagaraja, H.S.; Bhat, K.U.; Bhat, B.R. ZnO/carbon nanotube nanocomposite for high energy density supercapacitors. Electrochim. Acta 2013, 95, 119–124. [Google Scholar]
- Wang, G.; Zhang, L.; Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. Chem. Soc. Rev. 2012, 41, 797–828. [Google Scholar]
- Xu, M.W.; Zhao, D.D.; Bao, S.J.; Li, H.L. Mesoporous amorphous MnO2 as electrode material for supercapacitor. J. Solid State Electrochem. 2007, 11, 1101–1107. [Google Scholar]
- Srither, S.R.; Karthik, A.; Arunmetha, S.; Murugesan, D.; Rajendran, V. Electrochemical supercapacitor studies of porous MnO2 nanoparticles in neutral electrolytes. Mater. Chem. Phys. 2016, 183, 375–382. [Google Scholar]
- Wang, H.-Q.; Chen, J.; Hu, S.J.; Zhang, X.H.; Fan, X.P.; Du, J.; Huang, Y.G.; Li, Q.Y. Direct growth of flower-like 3D MnO2 ultrathin nanosheets on carbon paper as efficient cathode catalyst for rechargeable Li-O2 batteries. RSC Adv. 2015, 5, 72495–72499. [Google Scholar]
- Yang, L.C.; Zhong, Z.W.; Liu, J.W.; Gao, Q.S.; Hu, R.Z.; Zhu, M. Hierarchical MoO2/N-doped carbon heteronanowires with high rate and improved long-term performance for lithium-ion batteries. J. Power Sources 2016, 306, 78–84. [Google Scholar]
- Augustyn, V.; Come, J.; Lowe, M.A.; Kim, J.W.; Taberna, P.; Tolbert, S.H.; Abruña, H.D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522. [Google Scholar]
- Kim, H.; Cook, J.; Lin, H.; Ko, J.; Tolbert, S.; Dunn, B. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater. 2016, 16, 454–460. [Google Scholar]
Sample Code | Species | Peak Position (eV) | Peak Area | Mn4+/Mn3+ |
---|---|---|---|---|
HM3 | 2p3/2 Mn3+ | 642.1 | 134113.1 | 0.77 |
2p3/2 Mn4+ | 644.6 | 68664.4 | ||
2p1/2 Mn3+ | 653.7 | 38083.0 | ||
2p1/2 Mn4+ | 653.8 | 64231.1 |
Sample Code | Specific Surface Area (m2.g−1) | Average Pore Size (nm) | Weight of Active Material (mg) | Specific Capacitance (Fg−1) | Energy Density (Whkg−1) | Power Density (Wkg−1) |
---|---|---|---|---|---|---|
HM1 | 17 | 13 | 0.10 | 315 | 43 | 2.5 |
HM2 | 43 | 8 | 0.25 | 392 | 54 | 1.0 |
HM3 | 46 | 6 | 0.29 | 433 | 60 | 0.8 |
HM4 | 35 | 7 | 0.29 | 316 | 43 | 0.8 |
Sample Code | Current Density (mAcm−2) | Specific Capacitance (Fg−1) | Energy Density (Whkg−1) | Power Density (Wkg−1) |
---|---|---|---|---|
HM3 | 0.5 | 433 | 60 | 0.8 |
HM3 | 1 | 396 | 55 | 1.6 |
HM3 | 2 | 366 | 50 | 3.3 |
Sample Code | Series Resistance (Ω) | Capacitance (F) | Warburg (ΩS−1) |
---|---|---|---|
HM1 | 1.32 | 0.024 | 0.048 |
HM2 | 1.28 | 0.084 | 0.143 |
HM3 | 1.04 | 0.115 | 0.149 |
HM4 | 1.41 | 0.072 | 0.096 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teli, A.M.; Beknalkar, S.A.; Pawar, S.A.; Dubal, D.P.; Dongale, T.D.; Patil, D.S.; Patil, P.S.; Shin, J.C. Effect of Concentration on the Charge Storage Kinetics of Nanostructured MnO2 Thin-Film Supercapacitors Synthesized by the Hydrothermal Method. Energies 2020, 13, 6124. https://doi.org/10.3390/en13226124
Teli AM, Beknalkar SA, Pawar SA, Dubal DP, Dongale TD, Patil DS, Patil PS, Shin JC. Effect of Concentration on the Charge Storage Kinetics of Nanostructured MnO2 Thin-Film Supercapacitors Synthesized by the Hydrothermal Method. Energies. 2020; 13(22):6124. https://doi.org/10.3390/en13226124
Chicago/Turabian StyleTeli, Aviraj M., Sonali A. Beknalkar, Sachin A. Pawar, Deepak P. Dubal, Tukaram D. Dongale, Dipali S. Patil, Pramod S. Patil, and Jae Cheol Shin. 2020. "Effect of Concentration on the Charge Storage Kinetics of Nanostructured MnO2 Thin-Film Supercapacitors Synthesized by the Hydrothermal Method" Energies 13, no. 22: 6124. https://doi.org/10.3390/en13226124
APA StyleTeli, A. M., Beknalkar, S. A., Pawar, S. A., Dubal, D. P., Dongale, T. D., Patil, D. S., Patil, P. S., & Shin, J. C. (2020). Effect of Concentration on the Charge Storage Kinetics of Nanostructured MnO2 Thin-Film Supercapacitors Synthesized by the Hydrothermal Method. Energies, 13(22), 6124. https://doi.org/10.3390/en13226124