Gradient Heatmetry Advances
Abstract
:1. Introduction
2. GHFS Principle of Operation
3. GHFS Design
GHFS Calibration and Measurement Uncertainty
4. Application of GHFS
4.1. Convective Heat Transfer
4.2. Heat Transfer during Steam Condensation
4.2.1. Condensation on the Outer Surfaces of The Tubes
4.2.2. Condensation on the Inner Surfaces of Tubes
4.3. Heat Transfer during Boiling
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
HFS | Heat Flux Sensor |
EMF | Electromotive Force |
ATE | Anisotropic Thermoelemnt |
GHFS | Gradient Heat Flux Sensor |
HGHFS | Heterogeneous Gradient Heat Flux Sensor |
PIV | Particle Image Velocimetry |
HTC | Heat Transfer Coefficient |
PSD | Poser Spectral Density |
MCS | Measurement and Computing System |
References
- Mityakov, V.; Seroshtanov, V.; Vlasov, A.; Suchok, V.; Bobylev, P.; Zhidkov, N. Heat transfer and air flow near a pair of circular cylinders. E3S Web Conf. 2019, 140, 06012. [Google Scholar] [CrossRef] [Green Version]
- Sapozhnikov, S.; Mityakov, V.; Babich, A.; Zainullina, E. Study of condensation at the surfaces of tube with gradient heat flux measurement. MATEC Web Conf. 2018, 245, 06010. [Google Scholar] [CrossRef]
- Sapozhnikov, S.; Mityakov, V.; Subbotina, V. Gradient heat flux measurement in study of unsteady water film boiling at the surface of the sphere. J. Phys. Conf. Ser. 2019, 1382, 012119. [Google Scholar] [CrossRef]
- Goldstein, R.J.; Ibele, W.E.; Patankar, S.V.; Simon, T.W.; Kuehn, T.H.; Strykowski, P.J.; Tamma, K.K.; Heberlein, J.V.R.; Davidson, J.H.; Bischof, J.; et al. Heat transfer-A review of 2005 literature. Int. J. Heat Mass Transf. 2010, 53, 439-7–444-7. [Google Scholar] [CrossRef]
- Available online: https://www.fluxteq.com/ (accessed on 3 January 2020).
- Lartz, D.J.; Cudney, H.H.; Diller, T.E. Heat Flux Measurement and Heat Flux Sensor. In Heat Transfer; 1994; pp. 261–266. Available online: http://www.ihtcdigitallibrary.com (accessed on 1 September 2020). [CrossRef]
- Van der Graaf, F. Heat Flux Sensors. In Gopel (Ed.); “Thermal Sensors” of the Multivolume Work “Sensors, a Comprehensive Series”; Ricolfi, T., Scholz, J., Eds.; 1990; Chapter 8; Volume 4, Available online: https://onlinelibrary.wiley.com (accessed on 1 September 2020).
- Divin, N.; Sapozhnikov, S.; Kirillov, A. Gradientenartige Messgeber fur die Messung des Warmestromes. In Proceedings Messtechnik zur Undersuchung von Vorgangen in Thermischen Energieanlagen. XXVIII. Kraftwerkstechnisches Kolloquium und 6. Kolloquium Messtechnik fur Energieanlagen; 1996; pp. 155–160. Available online: https://www.tib.eu/de/suchen/id/tema:TEMAM97031655556/Gradientenartige-Messgeber-f%C3%BCr-die-Messung-des?cHash=df0ccaa1cbe4a920550c63f74291dff7/ (accessed on 1 September 2020).
- US Patent and trade Mark Office Database. Available online: https://www.uspto.gov/ (accessed on 4 January 2020).
- Anatychuk, L.I. Termoelementy i Termoelektricheskiye Ustroystva. Spravochnik (Thermoelements and Thermoelectric Devices. Refernce Book); Naukova Dumka: Kiev, Ukraine, 1979; p. 767. [Google Scholar]
- Divin, N.P. Useful Model 9959 RF, “Heat flux sensor” May 16, 1999, Polez. Modeli. Prom. Obraztsy, No. 5. Available online: https://rospatent.gov.ru (accessed on 10 July 2020).
- Samoilovich, A.G. Termoelektricheskiye i Termomagnitnyye metody Preobrazovaniya Energii (Thermoelectric and Thermomagnetic Methods of Energy Conversion); Mashinostroenie: Moscow, Russia, 1981. [Google Scholar]
- Srinivasan, B.; Berthebaud, D.; Mori, T. Is LiI a Potential Dopant Candidate to Enhance the Thermoelectric Performance in Sb-Free GeTe Systems? A Prelusive Study. Energies 2020, 13, 643. [Google Scholar] [CrossRef] [Green Version]
- Sapozhnikov, S.Z.; Mityakov, V.Y.; Mityakov, A.V. Heatmetry; Springer: Berlin/Heidelberg, Germany, 2020; p. 225. [Google Scholar]
- Knauss, H.; Gaisbauer, U.; Wagner, S.; Buntin, D.; Maslov, A.; Smorodsky, B.; Betz, J. Calibration experiments of a new active fast response heat flux sensor to measure total temperature fluctuations. Part I Introduction to the problem. In Proceedings of the International Conference on the Methods of Aerophysical Research, Novosibirsk, Russia, 1–7 July 2002; pp. 632–643. [Google Scholar]
- ISO/IEC Guide 98-1:2009(en) Uncertainty of Measurement—Part 1: Introduction to the Expression of Uncertainty in Measurement. Available online: www.iso.org/standard (accessed on 5 September 2020).
- Perrin, R.; Braza, M.; Cid, E.; Cazin, S.; Moradei, F.; Barthet, A.; Sevrain, A.; Hoarau, Y. Near-wake turbulence properties in the high Reynolds number incompressible flow around a circular cylinder measured by two- and three-component PIV. Flow Turbul. Combust 2006, 77, 185–204. [Google Scholar] [CrossRef]
- Available online: http://polis-instruments.ru/ (accessed on 1 September 2020).
- Mikheev, N.; Molochnikov, V.; Mikheev, A.; Dushina, O. Hydrodynamics and heat transfer of pulsating flow around a cylinder. Int. J. Heat Mass Transf. 2017, 109, 254–265. [Google Scholar] [CrossRef]
- Nakamura, H.; Igarashi, T. Unsteady heat transfer from a circular cylinder for Reynolds numbers from 3000 to 15,000. Int. J. Heat Fluid Flow 2004, 25, 741–748. [Google Scholar] [CrossRef]
- Sahin, B.; Akkoca, A.; Ozturk, N.A.; Akilli, H. Investigations of flow characteristics in a plate fin and tube heat exchanger model composed of single cylinder. Int. J. Heat Fluid Flow 2006, 27, 522–530. [Google Scholar] [CrossRef]
- Nada, S.A.; Hussein, M.S. General semi-empirical correlation for condensation of vapor on tubes at different orientations. Int. J. Therm. Sci. 2016, 100, 391–400. [Google Scholar] [CrossRef]
- Ooi, T.H.; Webb, D.R.; Heggs, P.J. A dataset of steam condensation over a double enhanced tube bundle under vacuum. Appl. Therm. Eng. 2004, 24, 1381–1393. [Google Scholar] [CrossRef]
- Sang, J.K.; Hee, C.N. Turbulent film condensation of high pressure steam in a vertical tube. Int. J. Heat Mass Transf. 2000, 43, 4031–4042. [Google Scholar]
- Fan, G.; Tong, P.; Sun, Z.; Chen, Y. Development of a new empirical correlation for steam condensation rates in the presence of air outside vertical smooth tube. Ann. Nucl. Energy 2018, 113, 139–146. [Google Scholar] [CrossRef]
- Chen, C.-K.; Lin, Y.-T. Laminar film condensation from a downward-flowing steam-air mixture onto a horizontal circular tube. Appl. Math. Model 2004, 33, 1944–1956. [Google Scholar] [CrossRef]
- Saleh, E.A.; Ormiston, S.J. An elliptic two-phase numerical model of laminar film condensation from a steam-air mixture flowing over a horizontal tube. Int. J. Heat Mass Transf. 2004, 112, 676–688. [Google Scholar] [CrossRef]
- Zabirov, A.R. Issledovaniye protsessov teploobmena pri okhlazhdenii vysokotemperaturnykh tel v nedogretykh zhidkostyakh (Investigation of heat transfer processes during cooling of high-temperature bodies in subcooled liquids). In Dissertation of a Candidate of Technical Sciences: Zabirov Arslan Ruslanovich; Moscow, Russia, 2016; Available online: www.dissercat.com (accessed on 1 August 2020).
- Grigor’ev, V.S.; Zhilin, V.G.; Zeigarnik, Y.A.; Ivochkin, Y.P.; Glazkov, V.V.; Sinkevich, O.A. The Behavior of a Vapor Film on a Highly Superheated Surface Immersed in Subcooled Water. Heat Mass Transf. Phys. Gasdyn. 2005, 43, 100–114. [Google Scholar]
- Gylys, J.; Skvorcinskiene, R.; Paukstaitis, L.; Gylys, M.; Adomavicius, A. Film boiling influence on the spherical body’s cooling in sub-cooled water. Int. J. Heat Mass Transf. 2016, 95, 709–719. [Google Scholar] [CrossRef]
Mode | Temperature Drop | Average Heat Flux |
---|---|---|
, K | q, MW/m | |
= 450 C; = 50 C | 400 | 9.332 |
= 450 C; = 25 C | 425 | 3.929 |
= 350 C; = 50 C | 300 | 0.930 |
= 350 C; = 25 C | 325 | 0.241 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sapozhnikov, S.Z.; Mityakov, V.Y.; Mityakov, A.V.; Gusakov, A.A.; Zainullina, E.R.; Grekov, M.A.; Seroshtanov, V.V.; Bashkatov, A.; Babich, A.Y.; Pavlov, A.V. Gradient Heatmetry Advances. Energies 2020, 13, 6194. https://doi.org/10.3390/en13236194
Sapozhnikov SZ, Mityakov VY, Mityakov AV, Gusakov AA, Zainullina ER, Grekov MA, Seroshtanov VV, Bashkatov A, Babich AY, Pavlov AV. Gradient Heatmetry Advances. Energies. 2020; 13(23):6194. https://doi.org/10.3390/en13236194
Chicago/Turabian StyleSapozhnikov, Sergey Z., Vladimir Y. Mityakov, Andrey V. Mityakov, Andrey A. Gusakov, Elza R. Zainullina, Mikhail A. Grekov, Vladimir V. Seroshtanov, Alexander Bashkatov, Alexander Y. Babich, and Andrey V. Pavlov. 2020. "Gradient Heatmetry Advances" Energies 13, no. 23: 6194. https://doi.org/10.3390/en13236194
APA StyleSapozhnikov, S. Z., Mityakov, V. Y., Mityakov, A. V., Gusakov, A. A., Zainullina, E. R., Grekov, M. A., Seroshtanov, V. V., Bashkatov, A., Babich, A. Y., & Pavlov, A. V. (2020). Gradient Heatmetry Advances. Energies, 13(23), 6194. https://doi.org/10.3390/en13236194