Deactivation of V2O5−WO3/TiO2 DeNOx Catalyst under Commercial Conditions in Power Production Plant
Abstract
:1. Introduction
2. Catalyst Performance
3. Problem of Ammonia Bisulfate Formation
3.1. Ammonia Slip
3.2. Sulfur Trioxide
3.3. Ammonia Bisulfate Formation
4. Deactivation Mechanisms
4.1. Poisoning
4.2. Mechanical Deactivation
4.3. Thermal Deactivation
5. Industrial Boilers Characteristics
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- UE. “Directive Implementation UE 2017/1442 from 31st of July 2017,” [Online]. Available online: http://data.europa.eu/eli/dec_impl/2017/1442/oj. (accessed on 23 September 2020).
- Kiełtyka, M.; Dias, A.P.S.; Kubiczek, H.; Sarapata, B.; Grzybek, T. The influence of poisoning on the deactivation of DeNOx catalysts. C. R. Chim. 2015, 18, 1036–1048. [Google Scholar] [CrossRef]
- Zheng, Y.; Jensen, A.D.; Johnsson, J.E. Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant. Appl. Catal. B Environ. 2005, 60, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Chi, H.E.; Chen, J.; Meng, X. Deactivation mechanism of de-NOx catalyst (V2O5-WO3/TiO2) used in coal fired power plant. J. Fuel Chem. Technol. 2012, 40, 1359–1365. [Google Scholar] [CrossRef]
- Li, M.; Liu, B.; Wang, X.; Yu, X.; Zheng, S.; Du, H.; Dreisinger, D.; Zhang, Y. A promising approach to recover a spent SCR catalyst: Deactivation by arsenic and alkaline metals and catalyst regeneration. Chem. Eng. J. 2018, 342, 1–8. [Google Scholar] [CrossRef]
- Deng, L.; Liu, X.; Cao, P.; Zhao, Y.; Du, Y.; Wang, C.; Che, D. A study on deactivation of V2O5eWO3eTiO2 SCR catalyst by alkali metals during entrained-flow combustion. J. Energy Inst. 2017, 90, 743–751. [Google Scholar] [CrossRef]
- Tomasic, V. Application of the monoliths in DeNOx catalysis. Catal. Today 2007, 119, 106–113. [Google Scholar] [CrossRef]
- Soleimanzadeh, H.; Niaei, A.; Salari, D.; Tarjomannejad, A.; Penner, S.; Grunbacher, M.; Hosseini, S.A.; Mousavi, S.M. Modeling and optimization of V2O5/TiO2 nanocatalysts for NH3 -Selective catalytic reduction (SCR) of NOx by RSM and ANN techniques. J. Environ. Manag. 2019, 238, 360–367. [Google Scholar] [CrossRef]
- Rauch, D.; Albrecht, G.; Kubinski, D.; Moos, R. A microvave-based method to monitor the ammonia loading of a vanadia-based SCR catalyst. Appl. Catal. B Environ. 2015, 165, 36–42. [Google Scholar] [CrossRef]
- Song, I.; Youn, S.; Lee, H.; Lee, S.G.; Cho, S.J.; Kim, D.H. Effects of microporous TiO2 support on the catalytic and structural properties of V2O5/microporous TiO2 for the selevtive catalytic reduction of NO by NH3. Appl. Catal. B Environ. 2017, 210, 421–431. [Google Scholar] [CrossRef]
- He, Y.; Ford, M.E.; Zhu, M.; Liu, Q.; Tumuluri, U.; Wu, Z.; Wachs, I.E. Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5-WO3/TiO2 catalysts. Appl. Catal. B Environ. 2016, 193, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Yates, M.; Martin, J.A.; Martin-Luengo, M.A.; Suarez, S.; Blanco, J. N2O formation in the ammonia oxidation and in the SCR process with V2O5-WO3 catalysts. Catal. Today 2005, 107, 120–125. [Google Scholar] [CrossRef]
- Huang, Y.; Tong, Z.; Wu, B.; Zhang, J. Low temperature selective catalytic reduction of NO by ammonia over VxO5-CeO2/TiO2. J. Fuel Chem. Technol. 2008, 36, 616–620. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, X.; Xie, A.; Lou, S.; Yao, C.; Li, X.; Zuo, S. V2O5-decorated Mn-Fe/attapulgite catalyst with high SO2 tolerance for SCR of NOx with NH3 at low temperature. Chem. Eng. J. 2017, 326, 1074–1085. [Google Scholar] [CrossRef]
- Nicosia, D.; Czekaj, I.; Krocher, O. Chemical deactivation of V2O5/WO3–TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution Part II. Characterization study of the effect of alkali and alkaline earth metals. Appl. Catal. B Environ. 2008, 77, 228–236. [Google Scholar] [CrossRef]
- Wan, Q.; Duan, L.; Li, J.; Chen, L.; He, K.; Hao, J. Deactivation performance and mechanism of alkali (earth) metals on V2O5–WO3/TiO2 catalyst for oxidation of gaseous elemental mercury in simulated coal-fired flue gas. Catal. Today 2011, 175, 189–195. [Google Scholar] [CrossRef]
- Youn, S.; Song, I.; Lee, H.; Cho, S.J.; Kim, D.H. Effect of pore structure of TiO2 on the SO2 poisoning over V2O5/TiO2 catalysts for selective catalytic reduction of NOx with NH3. Catal. Today 2018, 303, 19–24. [Google Scholar] [CrossRef]
- Hammershoi, P.S.; Jangjou, Y.; Epling, W.S.; Jensen, A.D.; Janssens, T.V. Reversible and irreversible deactivation of Cu-CHA NH3-SCRcatalysts by SO2 and SO3. Appl. Catal. B Environ. 2018, 226, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.; Wang, Z.; Li, H.; Xu, X.; Liu, M. SO2 promotion in NH3-SCR reaction over V2O5/SiC catalyst at low temperature. Fuel 2017, 194, 36–41. [Google Scholar] [CrossRef]
- Samojeden, B.; Grzybek, T. The influence of the promotion of N-midified activated carbon with iron on NO removal by NH3-SCR (Selective catalytic reduction). Energy 2016, 116, 1484–1491. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, T.; Zou, X.; Zhu, C.; Chen, C.; Liu, H. V2O5/hematite catalyst for low temperature selective catalytic reduction of NOx with NH3. Chin. J. Catal. 2014, 35, 99–107. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Święs, A.; Gil, B.; Rutkowska, M.; Piwowarska, Z.; Borcuch, A.; Michalik, M.; Chmielarz, L. Effective catalysts for the low-temperature NH3-SCR process based on MCM-41 modified with copper by template ion-exchange (TIE) method. Appl. Catal. B Environ. 2018, 237, 927–937. [Google Scholar] [CrossRef]
- EPRI. Laboratory Testing Protocol for Coal-Fired SCR Catalyst, 3rd ed.; Report no. 3002013048; Electric Power Research Institute: Palo Alto, CA, USA, 2018. [Google Scholar]
- Odenbrand, C. CaSO4 deactivated V2O5-WO3/TiO2 SCR catalyst for a diesel power plant. Characterization and simulation of the kinetics of the SCR reaction. Appl. Catal. B Environ. 2018, 234, 365–377. [Google Scholar] [CrossRef]
- Li, Q.; Chen, S.; Liu, Z.; Liu, Q. Combined effect of KCl and SO2 on the selective catalytic reduction of NO by NH3 over V2O5/TiO2 catalyst. Appl. Catal. B Environ. 2015, 164, 475–482. [Google Scholar] [CrossRef]
- Wang, J.; Miao, J.; Yu, W.; Chen, Y.; Chen, J. Study on the local difference of monolithic honeycomb V2O5-WO3/TiO2 denitration catalyst. Mater. Chem. Phys. 2017, 198, 193–199. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, Q. Surface characterization studies on the interaction of V2O5-WO3/TiO2 catalyst for low temperature SCR of NO with NH3. J. Solid State Chem. 2015, 221, 49–56. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, Q. Promotional effect of WO3 on O2 over V2O5/TiO2 catalyst for selective catalytic reduction of NO with NH3. J. Mol. Catal. A Chem. 2013, 373, 108–113. [Google Scholar] [CrossRef]
- Madia, G.; Koebel, M.; Elsener, M.; Wokaun, A. Side Reactions in the Selective Catalytic Reduction of NOx with Various NO2 Fractions. Ind. Eng. Chem. Res. 2002, 41, 4008–4015. [Google Scholar] [CrossRef]
- Castellino, F.; Rasmussen, S.B.; Jansen, A.D.; Johnsson, J.E.; Fehrmann, R. Deactivation of vanadia-based commercial SCR catalysts by polyphosphoric acids. Appl. Catal. B Environ. 2008, 83, 110–122. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Q.; Bian, L. Numerical Simulation and Optimization of Flow Field in the SCR Denitrification System on a 600 MW Capacity Units. Energy Procedia 2012, 14, 370–375. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Bartholomew, C.; Hecker, W.; Baxter, L. Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems. Appl. Catal. B Environ. 2009, 92, 30–40. [Google Scholar] [CrossRef]
- Soyer, S.; Uzun, A.; Senkan, S.; Onal, I. A quantum chemical study of nitric oxide reduction by ammonia (SCR reaction) on V2O5 catalyst surface. Catal. Today 2006, 118, 268–278. [Google Scholar] [CrossRef]
- Yao, H.; Chen, Y.; Wei, Y.; Zhao, Z.; Liu, Z.; Xu, C. A periodic DFT study of ammonia adsorption on the V2O5 (001), V2O5 (010) and V2O5 (100) surfaces: Lewis versus Brönsted acid sites. Surf. Sci. 2012, 606, 1739–1748. [Google Scholar] [CrossRef]
- Orsenigo, C.; Beretta, A.; Forzatti, P.; Svachula, J.; Tronconi, E.; Bregani, F.; Baldacci, A. Theoretical and experimental study of the interaction between NOx reduction and SO2 oxidation over DeNOx-SCR catalysts. Catal. Today 1996, 27, 15–21. [Google Scholar] [CrossRef]
- Boudali, L.; Ghorbel, A.; Grange, P. Characterization and reactivity of WO3eV2O5 supported on sulfated titanium pillared clay catalysts for the SCR-NO reaction. C. R. Chim. 2009, 12, 779–786. [Google Scholar] [CrossRef]
- Querel, C.; Bonfils, A.; Grondin, O.; Creff, Y. Control of a SCR system using a virtual NOx sensor. In Proceedings of the 7th IFAC Symposium on Advances in Automotive Control, Tokyo, Japan, 4–7 September 2013; pp. 9–14. [Google Scholar]
- Bonfilis, A.; Creff, Y.; Lepreux, O.; Petit, N. Closed-loop control of a SCR system using a NOx sensor cross-sensitive to NH3. In Proceedings of the 8th IFAC Symposium on Advanced Control of Chemical Processes, Singapore, 10–13 July 2012; pp. 738–743. [Google Scholar]
- Kang, Z.; Qixin, Y.; Lizheng, Z.; YuKun, D.; Baomin, S.; Wang, T. Study of the performance, simplification and characteristics of SNCR de-NOx in large-scale cyclone separator. Appl. Therm. Eng. 2017, 123, 635–645. [Google Scholar] [CrossRef]
- Daood, S.S.; Javed, M.T.; Gibbs, B.M.; Nimmo, W. NOx control in coal combustion by combining biomass co-firing, oxygen enrichment and SNCR. Fuel 2013, 105, 283–292. [Google Scholar] [CrossRef]
- Li, S.; Huang, W.; Xu, H.; Chen, T.; Ke, Y.; Qu, Z.; Yan, N. Alkali-induced deactivation mechanism of V2O5-WO3/TiO2 catalyst during selective catalytic reduction of NO by NH3 in aluminum hydrate calcining flue gas. Appl. Catal. B Environ. 2020, 270, 118872. [Google Scholar] [CrossRef]
- Song, L.; Chao, J.; Fang, Y.; He, H.; Li, J.; Qiu, W.; Zhang, G. Promotion of ceria for decomposition of ammonia bisulfate over V2O5-MoO3/TiO2 catalyst for selective catalytic reduction. Cham. Eng. J. 2016, 303, 275–281. [Google Scholar] [CrossRef]
- Putluru, S.; Schill, L.; Godiksen, A.; Poreddy, R.; Mossin, S.; Jensen, A.; Fehrmann, R. Promoted V2O5/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperatures. Appl. Catal. B Environ. 2016, 183, 282–290. [Google Scholar] [CrossRef] [Green Version]
- Koebel, M.; Madia, G.; Raimondi, F.; Wokaun, A. Enhanced Reoxidation of Vanadia by NO2 in the Fast SCR Reaction. J. Catal. 2002, 209, 159–165. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency, “Nitrogen Oxides (NOx), Why and How They Are Controlled,” 1999. [Online]. Available online: http://www.epa.gov/ttn/catc. (accessed on 5 September 2020).
- Salazar, M.; Hoffmann, S.; Singer, V.; Becker, R.; Grunert, W. Hybrid catalysts for the selective catalytic reduction (SCR) of NO by NH3. On the role of fast SCR in the reaction network. Appl. Catal. B Environ. 2016, 199, 433–438. [Google Scholar] [CrossRef]
- Li, Q.; Hou, X.; Yang, H.; Ma, Z.; Zheng, J.; Liu, F.; Zhang, X.; Yuan, Z. Promotional effect of CeOX for NO reduction over V2O5/TiO2-carbon nanotube composites. J. Mol. Catal. A: Chem. 2012, 356, 121–127. [Google Scholar] [CrossRef]
- Li, F.; Shen, B.; Tian, L.; Li, G.; He, C. Enhancement of SCR activity and mechanical stability on cordierite supported V2O5-WO3/TiO2 catalyst by substrate acid pretreatment and addition of silica. Powder Technol. 2016, 297, 384–391. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, M.; Tang, F.; Ruan, L.; Yang, H.; Li, N. Effect of Ce doping into V2O5-WO3/TiO2 catalysts on the selective catalytic reduction of NOx by NH3. J. Rare Earths 2017, 35, 1206–1215. [Google Scholar] [CrossRef]
- Shen, M.; Xu, L.; Wang, J.; Li, C.; Wang, W.; Wang, J.; Zhai, Y. Effect of synthesis methods on activity of V2O5/CeO2/WO3-TiO2 catalyst for selective catalytic reduction of NOx with NH3. J. Rare Earths 2016, 34, 259–267. [Google Scholar] [CrossRef]
- Shwan, S.; Partridge, W.; Choi, J.; Olsson, L. Kinetic modeling of NOx storage and reduction using spatially resolved MS measurements. Appl. Catal. B Environ. 2014, 147, 1028–1041. [Google Scholar] [CrossRef]
- Dolanc, G.; Strmcnik, S.; Petrovcic, J. NOx selective catalytic reduction control based on simple models. J. Process Control 2001, 11, 35–51. [Google Scholar] [CrossRef]
- Chen, C.; Cao, Y.; Liu, S.; Chen, J.; Jia, W. SCR catalyst doped with copper for synergistic removal of slip ammonia and elemental mercury. Fuel Process. Technol. 2018, 181, 268–278. [Google Scholar] [CrossRef]
- Krishnan, A.T.; Boehman, A.L. Selective catalytic reduction of nitric oxide with ammonia at low temperatures. Appl. Catal. B Environ. 1998, 18, 189–198. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, Y.; Liu, Y.; Yang, Z.; Qu, R.; Ye, D.; Liang, C.; Liu, S.; Gao, X. Formation, transformation, measurement, and control of SO3 in coal-fired power plants. Fuel 2019, 241, 327–346. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, W.; Zhou, J.; Wang, Z.; Liu, J.; Cen, K. Experimental study on ammonia adsorption by coal ashes. J. Fuel Chem. Technol. 2015, 43, 266–272. [Google Scholar] [CrossRef]
- Zyrkowski, M.; Neto, R.C.; Santos, L.; Witkowski, K. Characterization of fly-ash cenospheres from coal-fired power plant unit. Fuel 2016, 174, 49–53. [Google Scholar] [CrossRef]
- EPRI. State-of-Knowledge of Fate, Removal, and Impact of Ammonia in Ash; Report no. 1004700; Electric Power Research Institute: Palo Alto, CA, USA, 2002. [Google Scholar]
- EPRI. Investigation of Ammonia Adsorption on Fly Ash and Potential Impacts of Ammoniated Ash; Report no. TR-113777; Electric Power Research Institute: Palo Alto, CA, USA, 1999. [Google Scholar]
- Wang, X.; Zhang, J.; Wang, Z.; Wang, Y.; Vujanovic, M.; Li, P.; Tan, H. Experimental and kinetics study on SO3 catalytic formation by Fe2O3 in oxy-combustion. J. Environ. Manag. 2019, 236, 420–427. [Google Scholar] [CrossRef]
- Zyrkowski, M.; Zymelka, P. Modelling of flexible boiler operation in coal fired power plant. IOP Conf. Ser. Earth Environ. Sci. 2019, 214, 012074. [Google Scholar] [CrossRef]
- Sporl, R.; Maier, J.; Scheffknecht, G. Sulphur Oxide Emissions from Dust-Fired Oxy-Fuel Combustion of Coal. Energy Procedia 2013, 37, 1435–1447. [Google Scholar] [CrossRef] [Green Version]
- Dunn, J.P.; Koppula, P.R.; Stenger, H.G.; Wachs, I.E. Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia vatalysts. Appl. Catal. B Environ. 1998, 19, 103–117. [Google Scholar] [CrossRef]
- EPRI. Modeling of SO3 Formation Process in Coal-Fired Boilers; Report no. 1012689; Electric Power Research Institute: Palo Alto, CA, USA, 2007. [Google Scholar]
- Charles, A. Lockert, Breen Energy Solution., “Dynamic Control of SCR Minimum Operating Temperature,” [Online]. Available online: https://breenes.com/. (accessed on 6 September 2020).
- Lu, J.; Zhou, Z.; Zhang, H.; Yang, Z. Influenced factors study and evaluation for SO2/SO3 conversion rate in SCR process. Fuel 2019, 245, 528–533. [Google Scholar] [CrossRef]
- Breen Energy Solutions, “Comprehensive acid gas management,” [Online]. Available online: http://breenes.com/wp-content/uploads/2017/04/Comprehensive_Condensable_Management_Program-RevA.pdf. (accessed on 29 July 2019).
- Forzatti, P.; Nova, I.; Beretta, A. Catalytic properties in deNOx and SO2–SO3 reactions. Catal. Today 2000, 56, 431–441. [Google Scholar] [CrossRef]
- EPRI. Formation of N2O and NO2 Across Conventional DeNOx SCR Catalysts; Report no. 1019614; Electric Power Research Institute: Palo Alto, CA, USA, 2009. [Google Scholar]
- Qing, M.; Su, S.; Wang, L.; Liu, L.; Sun, Z.; Mostafa, M.; Xu, K.; Hu, S.; Wang, Y.; Xiang, J. Effects of H2O and CO2 on the catalytic oxidation property of V/W/Ti catalysts for SO3 generation. Fuel 2019, 237, 545–554. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, Q.; Yi, Q.; Zuo, W.; Feng, Y.; Chen, S.; Dong, Y. Experimental method for observing the fate of SO3/H2SO4 in a temperature decreasing flue gas flow: Creation of state diagram. Fuel 2019, 249, 449–456. [Google Scholar] [CrossRef]
- Li, Z.; Sun, F.; Shi, Y.; Li, F.; Ma, L. Experimental study and mechanism analysis on low temperature corrosion of coal fired boiler heating surface. Appl. Therm. Eng. 2015, 80, 355–361. [Google Scholar] [CrossRef]
- Qi, G.; Yang, R.T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst. J. Catal. 2003, 217, 434–441. [Google Scholar] [CrossRef]
- Hammershoi, P.S.; Vennestrom, P.N.; Falsig, H.; Jansen, A.D.; Janssens, T.V. Importance of the Cu oxidation state for the SO2 poisoning of a Cu-SAPO-34 catalyst in the NH3-SCR reaction. Appl. Catal. B Environ. 2018, 236, 377–383. [Google Scholar] [CrossRef]
- Wang, X.; Du, X.; Zhang, L.; Chen, Y.; Yang, G.; Ran, J. Promotion of NH4HSO4 decomposition in NO/NO2 contained atmosphere at low temperature over V2O5-WO3/TiO2 catalyst for NO reduction. Appl. Catal. A Gen. 2018, 559, 112–121. [Google Scholar] [CrossRef]
- Muzio, L.; Bogseth, S.; Himes, R.; Chien, Y.; Dunn-Rankin, D. Ammonium bisulfate formation and reduced load SCR operation. Fuel 2017, 206, 180–189. [Google Scholar] [CrossRef]
- Menasha, J.; Dunn-Rankin, D.; Muzio, L.; Stallings, J. Ammonium bisulfate formation temperature in a bench-scale single-channel air preheater. Fuel 2011, 90, 2445–2453. [Google Scholar] [CrossRef]
- Shi, Y.; Shu, H.; Zhang, Y.; Fan, H.; Zhang, Y.; Yang, L. Formation and decomposition of NH4HSO4 during selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalysts. Fuel Process. Technol. 2016, 150, 141–147. [Google Scholar] [CrossRef]
- Si, F.; Romero, C.; Yao, Z.; Schuster, E.; Xu, Z.; Morey, R.; Liebowitz, B. Optimization of coal-fired boiler SCRs based on modified support vector machine models and genetic algorithms. Fuel 2009, 88, 806–816. [Google Scholar] [CrossRef]
- Ning, R.; Liu, X.; Zhu, T. Research progress of low-temperature SCR danitration catalysts. Chin. J. Process Eng. 2019, 19, 223–234. [Google Scholar]
- Lee, S.M.; Kim, S.S.; Hong, S.C. Systematic mechanism study of the high temperature SCR of NOX by NH3 over a W/TiO2 catalyst. Chem. Eng. Sci. 2012, 79, 177–185. [Google Scholar]
- Wang, F.; Shen, B.; Zhu, S.; Wang, Z. Promotion of Fe and Co doped Mn-Ce/TiO2 catalysts for low temperature NH3-SCR with SO2 tolerance. Fuel 2019, 249, 54–60. [Google Scholar] [CrossRef]
- Zang, S.; Zhang, G.; Qiu, W.; Song, L.; Zhang, R.; He, H. Resistance to SO2 poisoning of V2O5/TiO2-PILC catalyst for the selective catalytic reduction of NO by NH3. Chin. J. Catal. 2016, 37, 888–897. [Google Scholar] [CrossRef]
- Xiao, H.; Chen, Y.; Qi, C.; Ru, Y. Effect of Na poisoning catalyst (V2O5-WO3/TiO2) on denitration process and SO3 formation. Appl. Surf. Sci. 2018, 433, 341–348. [Google Scholar] [CrossRef]
- Yan, Z.; Shi, X.; Yu, Y.; He, H. Alkali resistance promotion of Ce-doped vanadium-titanic-based NH3-SCR catalysts. J. Environ. Sci. 2018, 73, 155–161. [Google Scholar] [CrossRef]
- Tian, Y.; Yang, J.; Yang, C.; Lin, F.; Hu, G.; Kong, M.; Liu, Q. Comparative study of the poisoning effect of NaCl and Na2O on selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalyst. J. Energy Inst. 2019, 92, 1045–1052. [Google Scholar] [CrossRef]
- Kong, M.; Liu, Q.; Zhu, B.; Yang, J.; Li, L.; Zhou, Q.; Ren, S. Synergy of KCl and Hgel on selective catalytic reduction of NO with NH3 over V2O5–WO3/TiO2 catalysts. Chem. Eng. J. 2015, 264, 815–823. [Google Scholar] [CrossRef]
- Yu, W.; Wu, X.; Si, Z.; Weng, D. Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5-WO3/TiO2 catalyst. Appl. Surf. Sci. 2013, 283, 209–214. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Li, X.; Peng, Y.; Li, J. A neutral and coordination regeneration method of Ca-poisoned V2O5-WO3/TiO2 SCR catalyst. Catal. Commun. 2017, 100, 112–116. [Google Scholar] [CrossRef]
- Lisi, L.; Lasorella, G.; Malloggi, S.; Russo, G. Single and combined deactivating effect of alkali metals and HCl on commercial SCR catalysts. Appl. Catal. B Environ. 2004, 50, 251–258. [Google Scholar] [CrossRef]
- Klimczak, M.; Kern, P.; Heinzelmann, T.; Lucas, M.; Claus, P. High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts—Part I: V2O5–WO3/TiO2 catalysts. Appl. Catal. B Environ. 2010, 95, 39–47. [Google Scholar] [CrossRef]
- Tang, F.; Xu, B.; Shi, H.; Qiu, J.; Fan, Y. The poisoning effect of Na+ and Ca2+ ions doped on the V2O5/TiO2 catalysts for selective catalytic reduction of NO by NH3. Appl. Catal. B Environ. 2010, 94, 71–76. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Ge, M. The poisoning effect of alkali metals doping over nano V2O5–WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3. Chem. Eng. J. 2011, 170, 531–537. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Yang, R.T.; Mo, J.; Li, J.; Hao, J. The poisoning effect of calcium on V2O5-WO3/TiO2 catalyst for the SCR reaction: Comparison of different forms of calcium. Mol. Catal. 2017, 434, 16–24. [Google Scholar] [CrossRef]
- Zheng, Y.; Jensen, A.D.; Johnsson, J.E.; Thogersen, J.R. Deactivation of V2O5-WO3-TiO2 SCR catalyst at biomass fired power plants: Elucidation of mechanisms by lab- and pilot-scale experiments. Appl. Catal. B Environ. 2008, 83, 186–194. [Google Scholar] [CrossRef]
- Dahlin, S.; Nilsson, M.; Backstrom, D.; Bergman, S.L.; Bengtsson, E.; Bernasek, S.L.; Pettersson, L.J. Multivariate analysis of the effect of biodiesel-derived contaminants on V2O5-WO3/TiO2 SCR catalysts. Appl. Catal. B Environ. 2016, 183, 377–385. [Google Scholar] [CrossRef]
- Liu, S.; Guo, R.; Sun, X.; Liu, J.; Pan, W.; Xin, Z.; Shi, X.; Wang, Z.; Liu, X.; Qin, H. The deactivation effect of Cl on V/TiO2 catalyst for NH3-SCR process: A DRIFT study. J. Energy Inst. 2019, 92, 1610–1617. [Google Scholar] [CrossRef]
- Andonova, S.; Vovk, E.; Sjoblom, J.; Ozensoy, E.; Olsson, L. Chemical deactivation by phosphorous under lean hydrothermal conditions over Cu/BEA NH3-SCR catalysts. Appl. Catal. B Environ. 2014, 147, 251–263. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Su, S.; Qing, M.; Dai, Z.; Sun, Z.; Liu, L.; Wang, Y.; Hu, S.; Xu, K.; Xiang, J. MeltingsolidificationandleachingbehaviorsofV/Asduringco-combustion of the spent SCR catalyst with coal. Fuel 2019, 252, 164–171. [Google Scholar] [CrossRef]
- Peng, Y.; Si, W.; Li, X.; Luo, J.; Li, J.; Crittenden, J.; Hao, J. Comparison of MoO3 and WO3 on arsenic poisoning V2O5/TiO2 catalyst: DRIFTS and DFT study. Appl. Catal. B Environ. 2016, 181, 692–698. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; Liu, F.; Shi, W.; Yuan, J. CFD analysis on the catalyst layer breakage failure of an SCR-DeNOx system for a 350 MW coal-fired power plant. Comput. Chem. Eng. 2014, 69, 119–127. [Google Scholar] [CrossRef]
- Nova, I.; Ciardelli, C.; Tronconi, E.; Chatterjee, D.; Bandl-Konrad, B. NH3–NO/NO2 chemistry over V-based catalysts and its role in the mechanism of the Fast SCR reaction. Catal. Today 2006, 114, 3–12. [Google Scholar] [CrossRef]
- Lang, E.; Drtina, P. Numerical simulation of the fluid flow and the mixing process in a static mixer. Int. J. Heat Nass Transf. 1995, 38, 2239–2250. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; Wang, J.; Yuan, J. Application of CFD in the optimal design of a SCR-DeNOx system for a 3000 MW coal-fired power plant. Comput. Chem. Eng. 2013, 49, 50–60. [Google Scholar] [CrossRef]
- Khatun, N.; Tiwari, S.; Lal, J.; Tseng, C.; Liu, S.W.; Biring, S.; Sen, S. Stabilization of anatase phase by uncompensated Ga-V co-doping in TiO2: A structural phase transition, grain growth and optical property study. Ceram. Int. 2018, 44, 22445–22455. [Google Scholar] [CrossRef]
- Byrne, C.; Moran, L.; Hermosilla, D.; Merayo, N.; Blanco, A.; Rhatigan, S.; Hinder, S.; Ganguly, P.; Nolan, M.; Pillai, S. Effect of Cu doping on the anatase-to-rutile phase transition in TiO2 photocatalysts: Theory and experiments. Appl. Catal. B Environ. 2019, 246, 266–276. [Google Scholar] [CrossRef]
- Hanaor, D.; Sorrell, C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Li, H.; Duan, L.; Shen, H.; Zhang, Q.; Zhao, X. Influences of annealing atmosphere on phase transition temperature, optical properties and photocatalytic activities of TiO2 phase-junction microspheres. J. Alloys Compd. 2019, 789, 1015–1021. [Google Scholar] [CrossRef]
- Dauksta, E.; Medvids, A.; Onufrijevs, P.; Shimomura, M.; Fakuda, Y.; Murakami, K. Laser-induced crystalline phase transition from rutile to anatase of niobium doped TiO2. Curr. Appl. Phys. 2019, 19, 351–355. [Google Scholar] [CrossRef]
- Du, X.; Wu, Y.; Kou, Y.; Mu, J.; Yang, Z.; Hu, X.; Teng, F. Amorphous carbon inhibited TiO2 phase transition in aqueous solution and its application in photocatalytic degradation of organic dye. J. Alloys Compd. 2019, 810, 151917. [Google Scholar] [CrossRef]
- Chen, H.; Xia, Y.; Fang, R.; Huang, H.; Gan, Y.; Liang, C.; Zhang, J.; Zhang, W.; Liu, X. The effects of tungsten and hydrothermal aging in promoting NH3-SCR activity on V2O5/WO3-TiO2 catalysts. Appl. Surf. Sci. 2018, 459, 639–646. [Google Scholar] [CrossRef]
- Zhao, K.; Han, W.; Tang, Z.; Zhang, G.; Lu, J.; Lu, G.; Zhen, X. Investigation of coating technology and catalytic performance overmonolithic V2O5–WO3/TiO2 catalyst for selective catalytic reductionof NOx with NH3. Colloids Surf. A Physicochem. Eng. Asp. 2016, 503, 53–60. [Google Scholar] [CrossRef]
- Khatun, N.; Anita; Rajput, P.; Bhattacharya, D.; Jha, S.; Biring, S.; Sen, S. Anatase to rutile phase transition promoted by vanadium substitution in TiO2: A structural, vibrational and optoelectronic study. Ceram. Int. 2017, 43, 14128–14134. [Google Scholar]
- Liu, X.; Wu, X.; Xu, T.; Weng, D.; Si, Z.; Ran, R. Effects of silica additive on the NH3-SCR activity and thermal stability of a V2O5/WO3-TiO2 catalyst. Chin. J. Catal. 2016, 37, 1340–1346. [Google Scholar] [CrossRef]
- Sun, C.; Dong, L.; Yu, W.; Liu, L.; Li, H.; Gao, F.; Dong, L.; Chen, Y. Promotion effect of tungsten oxide on SCR of NO with NH3 for the V2O5–WO3/Ti0.5Sn0.5O2 catalyst: Experiments combined with DFT calculations. J. Mol. Catal. A Chem. 2011, 346, 29–38. [Google Scholar] [CrossRef]
- Marberger, A.; Elsener, M.; Nuguid, M.; Ferri, D.; Krocher, O. Thermal activation and aging of a V2O5/WO3-TiO2 catalyst for the selective catalytic reduction of NO with NH3. Appl. Catal. A General 2019, 573, 64–72. [Google Scholar] [CrossRef]
- Nova, I.; dall’Acqua, L.; Lietti, L.; Giamello, E.; Forzatti, P. Study of thermal deactivation of a de-NOx commercial catalyst. Appl. Catal. B Environ. 2001, 35, 31–42. [Google Scholar] [CrossRef]
- Ma, Z.; Deng, J.; Li, Z.; Li, Q.; Zhao, P.; Wang, L.; Sun, Y.; Zheng, H.; Pan, L.; Zhao, S.; et al. Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies. Atmos. Environ. 2016, 131, 164–170. [Google Scholar] [CrossRef]
- Tomeczek, J. Coal Combustion; Kriege Publishing Company: Malabar, FL, USA, 1994. [Google Scholar]
- Bujalski, M.; Zyrkowski, M.; Nabaglo, D.; Szczepanek, K. The algorithm of steam soot blowers operation based on the monitoring of fouling factors of heating surfaces of a coal-fired boiler under operating conditions. E3S Web Conf. 2019, 82, 01001. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zyrkowski, M.; Motak, M.; Samojeden, B.; Szczepanek, K. Deactivation of V2O5−WO3/TiO2 DeNOx Catalyst under Commercial Conditions in Power Production Plant. Energies 2020, 13, 6200. https://doi.org/10.3390/en13236200
Zyrkowski M, Motak M, Samojeden B, Szczepanek K. Deactivation of V2O5−WO3/TiO2 DeNOx Catalyst under Commercial Conditions in Power Production Plant. Energies. 2020; 13(23):6200. https://doi.org/10.3390/en13236200
Chicago/Turabian StyleZyrkowski, Maciej, Monika Motak, Bogdan Samojeden, and Krzysztof Szczepanek. 2020. "Deactivation of V2O5−WO3/TiO2 DeNOx Catalyst under Commercial Conditions in Power Production Plant" Energies 13, no. 23: 6200. https://doi.org/10.3390/en13236200
APA StyleZyrkowski, M., Motak, M., Samojeden, B., & Szczepanek, K. (2020). Deactivation of V2O5−WO3/TiO2 DeNOx Catalyst under Commercial Conditions in Power Production Plant. Energies, 13(23), 6200. https://doi.org/10.3390/en13236200