The Implications of Policy Uncertainty on Solar Photovoltaic Investment
Abstract
:1. Introduction
2. Background and Related Literature
2.1. Electricity Price Uncertainty
2.2. Policy Uncertainty
2.3. Modelling Volatility
3. Methodology
3.1. GARCH Models
3.2. Weighted Average Forecast Combinations
3.3. Forecast Evaluation
4. Data
5. Results and Discussion
5.1. Estimation Results
5.2. Forecasting Results
6. Conclusions and Policy Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Range | 01/01/07–01/01/18 | 01/01/14–01/01/18 |
---|---|---|
Out of sample | Year 1: weight estimations | Years 2–4: loss function computation |
Diagnostic Tests | ARCH(1) | GARCH(1,1) | GARCH-M | PARCH | NGARCHK | IGARCH | SAARCH | TGARCH | GJR-GARCH | APARCH | EGARCH |
---|---|---|---|---|---|---|---|---|---|---|---|
Q(20) | 338.7831 [0.0000] | 31.4653 [0.0493] | 36.8489 [0.0122] | 32.0447 [0.0428] | 24.5856 [0.2177] | 34.0167 [0.0260] | 42.1856 [0.0026] | 76.0232 [0.0000] | 34.0402 [0.0259] | 56.4840 [0.0000] | 59.4982 [0.0000] |
ARCH(20) | 207.509 [0.0000] | 27.540 [0.1207] | 33.808 [0.0275] | 28.063 [0.1079] | 21.949 [0.3433] | 31.296 [0.0514] | 37.929 [0.0090] | 71.248 [0.0000] | 30.178 [0.0670] | 51.964 [0.0001] | 55.363 [0.0000] |
B | 2.9441 [0.0000] | 1.7461 [0.0045] | 1.5373 [0.0177] | 1.7838 [0.0034] | 0.9293 [0.3536] | 1.5432 [0.0171] | 2.1029 [0.0003] | 3.3496 [0.0000] | 1.7366 [0.0048] | 2.7288 [0.0000] | 2.8610 [0.0000] |
Diagnostic Tests | ARCH(1) | GARCH(1,1) | GARCH-M | NGARCHK | IGARCH | PARCH | SAARCH | GJR-GARCH | APARCH |
---|---|---|---|---|---|---|---|---|---|
Q(20) | 116.7365 [0.0000] | 22.0905 [0.3356] | 18.4212 [0.5597] | 17.7214 [0.6058] | 35.3338 [0.0184] | 21.8372 [0.3494] | 20.7718 [0.4107] | 20.6662 [0.4170] | 20.6217 [0.4197] |
ARCH(20) | 100.200 [0.0000] | 22.125 [0.3338] | 18.479 [0.5559] | 17.680 [0.6084] | 35.630 [0.0170] | 21.895 [0.3462] | 20.719 [0.4138] | 20.698 [0.4151] | 20.668 [0.4169] |
B | 1.3635 [0.0486] | 1.8870 [0.0016] | 1.6496 [0.0087] | 0.6078 [0.8538] | 2.4106 [0.0000] | 1.8576 [0.0020] | 1.8809 [ 0.0017] | 1.8013 [0.0030] | 1.7982 [0.0031] |
Model | Criteria: MSE | Criteria: MAE |
---|---|---|
A. Benchmark: GJR-GARCH | ||
AR | −1.581 | −5.03 *** |
ARCH | −1.082 | −2.134 ** |
GARCH | −1.608 | −1.399 |
GARCH-M | −1.018 | 0.7794 |
PARCH | −1.571 | −1.299 |
NGARCHK | −1.109 | −1.01 |
IGARCH | −0.3787 | −2.533 ** |
SAARCH | −4.256 *** | 0.5236 |
TGARCH | −1.269 | 0.7777 |
APARCH | −1.315 | 0.8923 |
EGARCH | −1.165 | 0.7751 |
Simple | −0.9942 | −0.5939 |
Geometric | −1.038 | 0.4159 |
CLS | −1.031 | −1.871 * |
PCA | −2.1 1** | −8.647 *** |
IRMSE | −0.9984 | −0.6264 |
BMA | −3.378 *** | −5.075 *** |
B. Benchmark: CLS | ||
AR | −1.605 | −2.57 ** |
ARCH | −1.078 | −0.1233 |
GARCH | 0.7346 | 1.722* |
GARCH-M | −0.3296 | 1.529 |
PARCH | 0.6831 | 1.695 * |
NGARCHK | −1.073 | 1.583 |
IGARCH | 0.517 | −3.173 *** |
SAARCH | 0.8164 | 1.791 * |
TGARCH | −1.11 | 1.403 |
GJR GARCH | 1.031 | 1.871 * |
APARCH | 0.2457 | 1.531 |
EGARCH | −1.077 | 1.347 |
Simple | 0.5145 | 1.43 |
Geometric | −0.05019 | 1.468 |
PCA | −2.146 ** | −9.689 *** |
IRMSE | 0.5358 | 1.433 |
BMA | −3.462 *** | −4.097 *** |
Model | Criteria: MSE | Criteria: MAE |
---|---|---|
A. Benchmark: NGARCHK | ||
AR | −3.122 *** | −3.588 *** |
ARCH | −2.369 ** | −15.22 *** |
GARCH | −1.512 | −2.106 ** |
GARCH-M | −1.484 | −2.045 ** |
PARCH | −1.486 | −1.873 * |
IGARCH | −1.38 | 1.337 |
SAARCH | −1.539 | −2.059 ** |
GJR GARCH | −1.331 | −1.787 * |
APARCH | −1.334 | −1.724 ** |
Simple | −0.9922 | −10.03 *** |
Geometric | −1.11 | −2.451 ** |
CLS | −0.1049 | −4.883 *** |
PCA | −2.611 *** | −4.291 *** |
IRMSE | −1.146 | −6.094 *** |
BMA | −0.04666 | 0.7067 |
B. Benchmark: BMA | ||
AR | −3.178 *** | −3.493 *** |
ARCH | −2.388 ** | −12.93 *** |
GARCH | −1.646 * | −1.294 |
GARCH-M | −1.645 | −1.205 |
PARCH | −1.593 | −1.25 |
NGARCHK | 0.04666 | −0.7067 |
IGARCH | −1.596 | −0.2902 |
SAARCH | −1.67 * | −1.282 |
GJR GARCH | −1.487 | −1.209 |
APARCH | −1.477 | −1.201 |
Simple | −0.5043 | −2.612 *** |
Geometric | −1.222 | −1.2 |
CLS | 0.01375 | −3.814 *** |
PCA | −2.614 *** | −3.831 *** |
IRMSE | −0.8751 | −2.018 ** |
References
- Eryilmaz, D.; Homans, F.R. How does uncertainty in renewable energy policy affect decisions to invest in wind energy? Electr. J. 2016, 29, 64–71. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Renewables 2020. 2020. Available online: https://www.iea.org/reports/renewables-2020 (accessed on 16 November 2020).
- Burns, K. Exploring the Relationship between energy policy uncertainty and investment in renewable energy. In Proceedings of the 42nd IAEE International Conference, Montreal, QC, Canada, 29 May–1 June 2019. [Google Scholar]
- Bird, L.; Heeter, J.; Kreycik, C. Solar Renewable Energy Certificate (SREC) Markets: Status and Trends (No NREL/TP-6A20-52868); National Renewable Energy Lab. (NREL): Golden, CO, USA, 2011. [Google Scholar]
- Lee, M.; Hong, T.; Yoo, H.; Koo, C.; Kim, J.; Jeong, K.; Jeong, J.; Ji, C. Establishment of a base price for the Solar Renewable Energy Credit (SREC) from the perspective of residents and state governments in the United States. Renew. Sustain. Energy Rev. 2017, 75, 1066–1080. [Google Scholar] [CrossRef]
- Coulon, M.; Khazaei, J.; Powell, W.B. SMART-SREC: A stochastic model of the New Jersey solar renewable energy certificate market. J. Environ. Econ. Manag. 2015, 73, 13–31. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, N.; Kocaoglu, D.F. A comprehensive assessment of solar photovoltaic technologies: Literature review. In Proceedings of the Technology Management in the Energy Smart World (PICMET), PICMET’11, Portland, OR, USA, 31 July–4 August 2011; IEEE: Piscatawey, NJ, USA, 2011; pp. 1–11. [Google Scholar]
- Méndez, M.; Goyanes, A.; Fernandez, P.L. Real Options Valuation of a Wind Farm. SSRN Electron. J. 2009. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhou, P.; Zhou, D. A real options model for renewable energy investment with application to solar photovoltaic power generation in China. Energy Econ. 2016, 59, 213–226. [Google Scholar] [CrossRef]
- Torani, K.; Rausser, G.; Zilberman, D. Innovation subsidies versus consumer subsidies: A real options analysis of solar energy. Energy Policy 2016, 92, 255–269. [Google Scholar] [CrossRef] [Green Version]
- Efimova, O.; Serletis, A. Energy markets volatility modelling using GARCH. Energy Econ. 2014, 43, 264–273. [Google Scholar] [CrossRef]
- Monjas-Barroso, M.; Balibrea-Iniesta, J. Valuation of projects for power generation with renewable energy: A comparative study based on real regulatory options. Energy Policy 2013, 55, 335–352. [Google Scholar] [CrossRef]
- Boomsma, T.K.; Meade, N.; Fleten, S.-E. Renewable energy investments under different support schemes: A real options approach. Eur. J. Oper. Res. 2012, 220, 225–237. [Google Scholar] [CrossRef]
- Biondi, T.; Moretto, M. Solar Grid Parity dynamics in Italy: A real option approach. Energy 2015, 80, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Reuter, W.H.; Szolgayová, J.; Fuss, S.; Obersteiner, M. Renewable energy investment: Policy and market impacts. Appl. Energy 2012, 97, 249–254. [Google Scholar] [CrossRef]
- Nazari, M.S.; Maybee, B.; Whale, J.; McHugh, A. Climate Policy Uncertainty and Power Generation Investments: A Real Options-CVaR Portfolio Optimization Approach. Energy Procedia 2015, 75, 2649–2657. [Google Scholar] [CrossRef] [Green Version]
- Fuss, S.; Szolgayova, J.; Obersteiner, M.; Gusti, M. Investment under market and climate policy uncertainty. Appl. Energy 2008, 85, 708–721. [Google Scholar] [CrossRef]
- Abadie, L.M.; Goicoechea, N.; Galarraga, I. Carbon risk and optimal retrofitting in cement plants: An application of stochastic modelling, MonteCarlo simulation and Real Options Analysis. J. Clean. Prod. 2017, 142, 3117–3130. [Google Scholar] [CrossRef]
- Deeney, P.; Cummins, M.; Dowling, M.; Smeaton, A.F. Influences from the European Parliament on EU emissions prices. Energy Policy 2016, 88, 561–572. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, T.; Fujimori, S.; Havlík, P.; Valin, H.; Bodirsky, B.L.; Doelman, J.C.; Fellmann, T.; Kyle, P.; Koopman, J.F.L.; Lotze-Campen, H.; et al. Risk of increased food insecurity under stringent global climate change mitigation policy. Nat. Clim. Chang. 2018, 8, 699–703. [Google Scholar] [CrossRef] [Green Version]
- Ritzenhofen, I.; Spinler, S. Optimal design of feed-in-tariffs to stimulate renewable energy investments under regulatory uncertainty—A real options analysis. Energy Econ. 2016, 53, 76–89. [Google Scholar] [CrossRef]
- Ioannou, A.; Angus, A.; Brennan, F.P. Risk-based methods for sustainable energy system planning: A review. Renew. Sustain. Energy Rev. 2017, 74, 602–615. [Google Scholar] [CrossRef]
- Rodríguez, M.C.; Haščič, I.; Johnstone, N.; Silva, J.; Ferey, A. Renewable Energy Policies and Private Sector Investment: Evidence from Financial Microdata. Environ. Resour. Econ. 2015, 62, 163–188. [Google Scholar] [CrossRef]
- Zeng, Y.; Klabjan, D.; Arinez, J. Distributed solar renewable generation: Option contracts with renewable energy credit uncertainty. Energy Econ. 2015, 48, 295–305. [Google Scholar] [CrossRef]
- Felder, F.A.; Loxley, C.J. The Implications of a Vertical Demand Curve in Solar Renewable Portfzolio Standards; Center for Research in Regulated Industries, Rutgers University: Camden, NJ, USA, 2012; p. 17. [Google Scholar]
- Mann, W. Solar Renewable Energy Certificate Markets: Assessing the Volatility Impact; Washington University in St Louis: St. Louis, MO, USA, 2014. [Google Scholar]
- Nomikos, N.; Andriosopoulos, K. Modelling energy spot prices: Empirical evidence from NYMEX. Energy Econ. 2012, 34, 1153–1169. [Google Scholar] [CrossRef]
- Mason, C.F.; Wilmot, N.A. Jump processes in natural gas markets. Energy Econ. 2014, 46, S69–S79. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Shi, J. Applying ARMA–GARCH approaches to forecasting short-term electricity prices. Energy Econ. 2013, 37, 152–166. [Google Scholar] [CrossRef]
- Escribano, A.; Peña, J.I.; Villaplana, P. Modelling Electricity Prices: International Evidence. Oxf. Bull. Econ. Stat. 2011, 73, 622–650. [Google Scholar] [CrossRef] [Green Version]
- Koopman, S.J.; Ooms, M.; Carnero, M.A. Periodic Seasonal Reg-ARFIMA–GARCH Models for Daily Electricity Spot Prices. J. Am. Stat. Assoc. 2007, 102, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Knittel, C.R.; Roberts, M.R. An empirical examination of restructured electricity prices. Energy Econ. 2005, 27, 791–817. [Google Scholar] [CrossRef]
- Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. J. Econ. 1986, 31, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Engle, R.F. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica 1982, 50, 987–1007. [Google Scholar] [CrossRef]
- Morana, C. A semiparametric approach to short-term oil price forecasting. Energy Econ. 2001, 23, 325–338. [Google Scholar] [CrossRef]
- Lin, S.X.; Tamvakis, M.N. Spillover effects in energy futures markets. Energy Econ. 2001, 23, 43–56. [Google Scholar] [CrossRef]
- Andersen, T.G.; Bollerslev, T. Answering the Skeptics: Yes, Standard Volatility Models do Provide Accurate Forecasts. Int. Econ. Rev. 1998, 39, 885–905. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, C. Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models? Energy Econ. 2012, 34, 2167–2181. [Google Scholar] [CrossRef]
- Hansen, P.R.; Lunde, A. A forecast comparison of volatility models: Does anything beat a GARCH(1,1)? J. Appl. Econ. 2005, 20, 873–889. [Google Scholar] [CrossRef] [Green Version]
- Bates, J.M.; Granger, C.W. The combination of forecasts. J. Oper. Res. Soc. 1969, 20, 451–468. [Google Scholar] [CrossRef]
- Bunn, D.; Farmer, E.D. Comparative Models for Electrical Load Forecasting. 1985. Available online: https://www.osti.gov/biblio/6256333 (accessed on 18 March 2020).
- Smith, D.G. Combination of forecasts in electricity demand prediction. J. Forecast. 1989, 8, 349–356. [Google Scholar] [CrossRef]
- Taylor, J.W.; Majithia, S. Using combined forecasts with changing weights for electricity demand profiling. J. Oper. Res. Soc. 2000, 51, 72–82. [Google Scholar] [CrossRef]
- Nan, F. Forecasting Next-Day Electricity Prices: From Different Models to Combination. Ph.D. Thesis, University of Padua, Padua, Italy, 2009. [Google Scholar]
- Aggarwal, S.K.; Saini, L.M.; Kumar, A. Electricity price forecasting in deregulated markets: A review and evaluation. Int. J. Electr. Power Energy Syst. 2009, 31, 13–22. [Google Scholar] [CrossRef]
- Bordignon, S.; Bunn, D.W.; Lisi, F.; Nan, F. Combining day-ahead forecasts for British electricity prices. Energy Econ. 2013, 35, 88–103. [Google Scholar] [CrossRef] [Green Version]
- Nowotarski, J.; Raviv, E.; Trück, S.; Weron, R. An empirical comparison of alternative schemes for combining electricity spot price forecasts. Energy Econ. 2014, 46, 395–412. [Google Scholar] [CrossRef]
- Nowotarski, J.; Weron, R. To Combine or Not to Combine? Recent Trends in Electricity Price Forecasting; (No. HSC/16/01); Hugo Steinhaus Center, Wroclaw University of Technology: Wroclaw, Poland, 2016. [Google Scholar]
- Maciejowska, K.; Nowotarski, J.; Weron, R. Probabilistic forecasting of electricity spot prices using Factor Quantile Regression Averaging. Int. J. Forecast. 2016, 32, 957–965. [Google Scholar] [CrossRef]
- Zhang, H.; Byrne, J.; Assereto, M. Combining GARCH Model Forecasts of Volatility with Alternative Weighting Schemes in Electricity Markets. SSRN Electron. J. 2018. [Google Scholar] [CrossRef]
- Méndez-Suárez, M.; García-Fernández, F.; Gallardo, F. Artificial Intelligence Modelling Framework for Financial Automated Advising in the Copper Market. J. Open Innov. Technol. Mark. Complex. 2019, 5, 81. [Google Scholar] [CrossRef] [Green Version]
- Black, F. The pricing of commodity contracts. J. Financial Econ. 1976, 3, 167–179. [Google Scholar] [CrossRef]
- Popova, J. Spatial pattern in modeling electricity prices: Evidence from the PJM market. In Proceedings of the 24th USAEE/IAEE North American Conference, Washington, DC, USA, 8–10 July 2004; pp. 8–10. [Google Scholar]
- Do, L.P.C.; Lin, K.H.; Molnár, P. Electricity consumption modelling: A case of Germany. Econ. Model. 2016, 55, 92–101. [Google Scholar] [CrossRef]
- Ketterer, J.C. The impact of wind power generation on the electricity price in Germany. Energy Econ. 2014, 44, 270–280. [Google Scholar] [CrossRef] [Green Version]
- Higgs, H.; Worthington, A.C. Stochastic price modeling of high volatility, mean-reverting, spike-prone commodities: The Australian wholesale spot electricity market. Energy Econ. 2008, 30, 3172–3185. [Google Scholar] [CrossRef]
- Ziel, F.; Steinert, R. Probabilistic mid- and long-term electricity price forecasting. Renew. Sustain. Energy Rev. 2018, 94, 251–266. [Google Scholar] [CrossRef] [Green Version]
- Clemen, R.T. Combining forecasts: A review and annotated bibliography. Int. J. Forecast. 1989, 5, 559–583. [Google Scholar] [CrossRef]
- Stock, J.H.; Watson, M.W. Combination forecasts of output growth in a seven-country data set. J. Forecast. 2004, 23, 405–430. [Google Scholar] [CrossRef]
- Genre, V.; Kenny, G.; Meyler, A.; Timmermann, A. Combining expert forecasts: Can anything beat the simple average? Int. J. Forecast. 2013, 29, 108–121. [Google Scholar] [CrossRef]
- Raftery, A.E.; Painter, I.S.; Volinsky, C.T. BMA: An R package for Bayesian model averaging. R News 2005, 5, 2–8. [Google Scholar]
- Zhang, J.; Zhang, J.-L. Volatility forecasting of crude oil market: A new hybrid method. J. Forecast. 2017, 37, 781–789. [Google Scholar] [CrossRef]
- Patton, A.J. Volatility forecast comparison using imperfect volatility proxies. J. Econ. 2011, 160, 246–256. [Google Scholar] [CrossRef] [Green Version]
- Brailsford, T.J.; Faff, R.W. An evaluation of volatility forecasting techniques. J. Bank. Financ. 1996, 20, 419–438. [Google Scholar] [CrossRef]
- Sadorsky, P. Modeling and forecasting petroleum futures volatility. Energy Econ. 2006, 28, 467–488. [Google Scholar] [CrossRef]
- Kang, S.H.; Yoon, S.-M. Forecasting volatility of crude oil markets. Energy Econ. 2009, 31, 119–125. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, Y.; Huang, D. Forecasting crude oil market volatility: Further evidence using GARCH-class models. Energy Econ. 2010, 32, 1477–1484. [Google Scholar] [CrossRef]
- Triacca, U. On the variance of the error associated to the squared return as proxy of volatility. Appl. Financ. Econ. Lett. 2007, 3, 255–257. [Google Scholar] [CrossRef]
- Giles, D.E. Some properties of absolute returns as a proxy for volatility. Appl. Financ. Econ. Lett. 2008, 4, 347–350. [Google Scholar] [CrossRef]
- Wang, F.; Li, K.; Zhou, L.; Ren, H.; Contreras, J.; Shafie-Khah, M.; Catalão, J.P. Daily pattern prediction based classification modeling approach for day-ahead electricity price forecasting. Int. J. Electr. Power Energy Syst. 2019, 105, 529–540. [Google Scholar] [CrossRef]
- Garcia, R.; Contreras, J.; Van Akkeren, M.; Garcia, J. A GARCH Forecasting Model to Predict Day-Ahead Electricity Prices. IEEE Trans. Power Syst. 2005, 20, 867–874. [Google Scholar] [CrossRef]
- Sandhu, H.S.; Fang, L.; Guan, L. Forecasting day-ahead price spikes for the Ontario electricity market. Electr. Power Syst. Res. 2016, 141, 450–459. [Google Scholar] [CrossRef]
- Janczura, J.; Trück, S.; Weron, R.; Wolff, R.C. Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling. Energy Econ. 2013, 38, 96–110. [Google Scholar] [CrossRef] [Green Version]
- Database of State Incentives for Renewables & Efficiency (DSIRE). Business Energy Investment Tax Credit (ITC). 2018. Available online: http://programs.dsireusa.org/system/program/detail/658 (accessed on 18 March 2020).
- Janczura, J.; Weron, R. An empirical comparison of alternate regime-switching models for electricity spot prices. Energy Econ. 2010, 32, 1059–1073. [Google Scholar] [CrossRef] [Green Version]
- Hickey, E.; Loomis, D.G.; Mohammadi, H. Forecasting hourly electricity prices using ARMAX–GARCH models: An application to MISO hubs. Energy Econ. 2012, 34, 307–315. [Google Scholar] [CrossRef]
- Swanson, N.R.; Elliott, G.; Ghysels, E.; Gonzalo, J. Predictive methodology and application in economics and finance: Volume in honor of the accomplishments of Clive W.J. Granger. J. Econ. 2006, 135, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wu, C.; Yang, L. Forecasting crude oil market volatility: A Markov switching multifractal volatility approach. Int. J. Forecast. 2016, 32, 1–9. [Google Scholar] [CrossRef]
- Mohammadi, H.; Su, L. International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models. Energy Econ. 2010, 32, 1001–1008. [Google Scholar] [CrossRef]
ARCH(1) | ht = ω + α |
GARCH(1,1) | ht = ω + α + βht−1 |
GARCH-M | rt = ω + βxt +θht + εt |
PARCH | ht = ω + α + β |
NGARCHK | ht = ω + βht-1 + α1( − k0)2 + α2( − k0)2 |
IGARCH | ht = ω + α + (1-α)ht−1 |
SAARCH | ht = ω + α + γ+ βht−1 |
TGARCH | ht = ω + α| + γ| I ( > 0) + βht−1 |
GJR-GARCH | ht = ω + α+ βht−1 + γI(0) |
APARCH | = ω + α(| + γ)δ + |
EGARCH | ln(ht) = ω + α(|| − ) + γ + βln() |
Electricity | SREC | |
---|---|---|
Observations | 4014 | 4015 |
Mean | 0.0003 | 0.0000 |
Standard deviation | 0.1678 | 0.2432 |
Skewness | 0.2828 | 0.2454 |
Kurtosis | 9.4892 | 20.7567 |
Skewness–Kurtosis test for normality | 592.70 (0.0000) | 982.69 (0.0000) |
ADF (5% critical value: −2.860) | −23.456 | −23.374 |
PP (5% critical value: −2.860) | −65.119 | −159.708 |
ARCH(1) | GARCH(1,1) | GARCH-M | PARCH | NGARCHK | IGARCH | SAARCH | TGARCH | GJR-GARCH | APARCH | EGARCH | |
---|---|---|---|---|---|---|---|---|---|---|---|
ω | 0.0153 *** | 0.0013 *** | 0.0019 *** | 0.0014 | 0.0005 *** | 0.0006 *** | 0.0010 *** | 0.0045 *** | 0.0012 *** | 0.0032 ** | −0.1292 *** |
α | 0.3443 *** | 0.1192 *** | 0.1416 *** | 0.1199 *** | 0.1429 *** | 0.0897 *** | 0.0335 *** | 0.0432 ** | 0.0766 *** | 0.1419 *** | |
β | 0.8225 *** | 0.7734 *** | 0.8247 *** | 0.9166 *** | 0.8572 *** | 0.8598 *** | 0.9103 *** | 0.8504 *** | 0.8960 *** | 0.9669 *** | |
γ | 0.0089 *** | 0.0811 *** | 0.0876 *** | 0.4723 *** | 0.0736 *** | ||||||
ϕ | 1.9516 *** | 1.2740 *** | |||||||||
α1 | 0.1891 *** | ||||||||||
α2 | −0.1332 *** | ||||||||||
k0 | −0.0368 ** | ||||||||||
ht | 1.7077 | ||||||||||
ht−1 | −1.8851 *** |
ARCH(1) | GARCH(1,1) | GARCH-M | NGARCHK | IGARCH | PARCH | SAARCH | GJR-GARCH | APARCH | |
---|---|---|---|---|---|---|---|---|---|
ω | 0.0138 *** | 0.0000 *** | 0.0000 *** | 0.0000 *** | 0.0000 *** | 0.0000 *** | 0.0000 ** | 0.0000 *** | 0.0000 *** |
α | 1.6326 *** | 0.0758 *** | 0.0763 *** | 0.0507 *** | 0.0700 *** | 0.0792 *** | 0.0958 *** | 0.0655 *** | |
β | 0.9419 *** | 0.9420 *** | 0.9503 *** | 0.9494 *** | 0.9389 *** | 0.9387 *** | 0.9439 *** | 0.9429 *** | |
γ | 0.0024 *** | −0.0523 *** | −0.1846 *** | ||||||
ϕ | 2.228 *** | 2.0719 *** | |||||||
α1 | 0.3210 *** | ||||||||
α2 | −0.2585 *** | ||||||||
k0 | −0.0106 *** | ||||||||
ht | 2.5861 *** | ||||||||
ht−1 | −2.5383 *** |
Model | MSE | MAE | QLIKE |
---|---|---|---|
AR(1) | 0.00740 | 0.03268 | 15.82333 |
ARCH | 0.00610 | 0.03005 | −2.58865 |
GARCH | 0.00543 | 0.02908 | −2.71999 |
GARCH-M | 0.00548 | 0.02867 | −2.72530 |
PARCH | 0.00544 | 0.02907 | −2.71965 |
NGARCHK | 0.00558 | 0.02921 | −2.69208 |
IGARCH | 0.00542 | 0.03134 | −2.72385 |
SAARCH | 0.00542 | 0.02884 | −2.71543 |
TGARCH | 0.00552 | 0.02852 | −2.70458 |
GJR GARCH | 0.00539 | 0.02891 | −2.72011 |
APARCH | 0.00546 | 0.02858 | −2.71102 |
EGARCH | 0.00554 | 0.02847 | −2.70711 |
Simple | 0.00545 | 0.02898 | −2.72637 |
Geometric | 0.00547 | 0.02878 | −2.72292 |
CLS | 0.00546 | 0.02992 | −2.72772 |
PCA | 0.00993 | 0.06333 | −2.35884 |
IRMSE | 0.00545 | 0.02898 | −2.72628 |
BMA | 0.00607 | 0.03745 | −1.94074 |
Model | MSE | MAE | QLIKE |
---|---|---|---|
AR(1) | 0.00199 | 0.01629 | 15.13625 |
ARCH | 0.00242 | 0.02292 | −3.79443 |
GARCH | 0.00106 | 0.01055 | −5.80241 |
GARCH-M | 0.00105 | 0.01039 | −5.80483 |
PARCH | 0.00106 | 0.01057 | −5.78668 |
NGARCHK | 0.00099 | 0.00981 | −5.85620 |
IGARCH | 0.00105 | 0.00957 | −5.78992 |
SAARCH | 0.00106 | 0.01055 | −5.84121 |
GJR GARCH | 0.00105 | 0.01047 | −5.79137 |
APARCH | 0.00105 | 0.01048 | −5.78757 |
Simple | 0.00100 | 0.01113 | −4.96500 |
Geometric | 0.00101 | 0.01027 | −5.73398 |
CLS | 0.00099 | 0.01107 | −4.74753 |
PCA | 0.00210 | 0.02379 | −4.44182 |
IRMSE | 0.00101 | 0.01082 | −5.12598 |
BMA | 0.00099 | 0.00939 | −5.03075 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assereto, M.; Byrne, J. The Implications of Policy Uncertainty on Solar Photovoltaic Investment. Energies 2020, 13, 6233. https://doi.org/10.3390/en13236233
Assereto M, Byrne J. The Implications of Policy Uncertainty on Solar Photovoltaic Investment. Energies. 2020; 13(23):6233. https://doi.org/10.3390/en13236233
Chicago/Turabian StyleAssereto, Martina, and Julie Byrne. 2020. "The Implications of Policy Uncertainty on Solar Photovoltaic Investment" Energies 13, no. 23: 6233. https://doi.org/10.3390/en13236233
APA StyleAssereto, M., & Byrne, J. (2020). The Implications of Policy Uncertainty on Solar Photovoltaic Investment. Energies, 13(23), 6233. https://doi.org/10.3390/en13236233