A Multi-Physics Adaptive Time Step Coupling Algorithm for Light-Water Reactor Core Transient and Accident Simulation
Abstract
:1. Introduction
2. Methodology
2.1. Pellet-to-Cladding Heat Transfer Phenomena
2.2. MPCORE Modules
- RAST-K [16] is a three-dimensional two-group nodal diffusion code used for depletion and transient analysis of light water reactor cores having square assemblies. The nodal solver is accompanied with pin-by-pin power reconstruction, micro-depletion analysis and xenon/samarium build-up modules. The two-group cross-section library and pin-wise power shape functions for the reconstruction module are computed by lattice code STREAM. This allows the fuel assemblies with asymmetric burnable rod position to be assessed [24].
- FRAPI [18] is the fuel rod analysis program interface designed for the loose coupling of the fuel rod analysis codes FRAPCON and FRAPTRAN [17] with other reactor core codes. The interface supports most of the original code options beside the two-dimensional finite element analysis of fuel rod cladding. The diagram of the phenomena simulated by the codes is presented in Figure 1.
- CTH1D is the homogeneous one-phase code for transient and steady-state simulation of coolant flow in a fuel rod channel. The code implements one-dimensional energy and mass conservation equations with the steam-water properties provided by FREESTEAM which is an open source implementation of international-standard IAPWS-IF97. In addition, CTH1D is able to simulate coolant boiling effect based on the correlations of critical heat flux and heat transfer coefficient adopted from FRAPTRAN.
2.3. Integration Scheme
2.4. Step Processing
3. Results and Analysis
3.1. BEAVRS Core Model
3.2. HZP and HFP States
3.3. HZP REA Analysis
3.4. MPCORE Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BOC | Beginning of cycle |
DNB | Departure from nucleate boiling |
HTC | Heat transfer coefficient |
HFP | Hot full power |
HZP | Hot zero power |
LTE | Local truncation error |
MTU | Metric ton of uranium |
PWR | Pressurized water reactor |
REA | Rod ejection accident |
RMS | Root mean square |
pcm | Percent mille, 1 pcm = |
ppm | Parts per million, 1 ppm = |
References
- Wang, J.; Wang, Q.; Ding, M. Review on neutronic/thermal-hydraulic coupling simulation methods for nuclear reactor analysis. Ann. Nucl. Energy 2020, 137, 1377–1386. [Google Scholar] [CrossRef]
- Ivanov, K.; Avramova, M.N. Challenges in coupled thermal-hydraulics and neutronics simulations for LWR safety analysis. Ann. Nucl. Energy 2007, 34, 501–513. [Google Scholar] [CrossRef]
- Yu, J.; Lee, H.; Lemaire, M.; Kim, H.; Zhang, P.; Lee, D. MCS based neutronics/thermal-hydraulics/fuel- performance coupling with CTF and FRAPCON. Comput. Phys. Commun. 2019, 238, 1–18. [Google Scholar] [CrossRef]
- Kim, W.; Lee, H.; Lemaire, M.; Kim, H.; Zhang, P.; Lee, D. Fuel performance analysis of BEAVRS benchmark Cycle 1 depletion with MCS/FRAPCON coupled system. Ann. Nucl. Energy 2020, 138, 107192. [Google Scholar]
- Jang, J.; Kim, W.; Jeong, S.; Jeong, E.; Park, J.; Lemaire, M.; Lee, H.; Jo, Y.; Zhang, P.; Lee, D. Validation of UNIST Monte Carlo Code MCS for Criticality Safety Analysis of PWR Spent Fuel Pool and Storage Cask. Ann. Nucl. Energy 2018, 114, 495–509. [Google Scholar] [CrossRef]
- Salko, R. CTF Theory Manual; Reactor Dynamics and Fuel Management Group, Pennsylvania State University: State College, PA, USA, 2014. [Google Scholar]
- Geelhood, K.; Lusher, W. FRAPCON-4.0: Integral Assessment; Pacific Northwest National Laboratory: Richland, WA, USA, 2015.
- Cherezov, A.; Jang, J.; Lee, D. MPCORE Code for OPR-1000 Transient Multiphysics Simulation with Adaptive Time Step Size Control. In Proceedings of the American Nuclear Society Annual Meeting, Miami Beach, FL, USA, 8–11 June 2020; pp. 389–392. [Google Scholar]
- Cherezov, A.; Jang, J.; Lee, D. A PCA compression method for reactor core transient multiphysics simulation. Prog. Nucl. Energy 2020, 128, 103441. [Google Scholar] [CrossRef]
- Jernkvist, L.; Massih, A. State-of-the-Art Report. Nuclear Fuel Behavior under Reactivity-initiated Accident (RIA) Conditions; Nuclear Energy Agency, OECD: Paris, France, 2010. [Google Scholar]
- Rudling, P.; Jernkvist, L.O.; Garzarolli, F.; Adamson, R.; Mahmood, T.; Strasser, A.; Patterson, C. Nuclear Fuel Behavior under RIA Conditions; Advanced Nuclear Technology International Europe AB: Tollered, Sweden, 2016. [Google Scholar]
- Panka, I.; Kereszturi, A.; Molnar, A. Coupling the Fraptran Fuel Behavior and the TRABCO Hot Channel Thermal Hydraulics Codes. In Proceedings of the 21st AER Symposium, Dresden, Germany, 23 September 2011. [Google Scholar]
- Shampine, L. Local error estimation by doubling. Computing 1985, 34, 179–190. [Google Scholar] [CrossRef]
- Hairer, E. Solving Ordinary Differential Equations: I. Nonstiff Problems; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Zimin, V.G.; Cherezov, A. Application of Backward Differentiation Formulas to Neutron Kinetics Problems. Phys. At. Nucl. 2017, 80, 1377–1386. [Google Scholar] [CrossRef]
- Choe, J.; Choi, S.; Zhang, P.; Park, J.; Kim, W.; Shin, H.C.; Lee, H.C.; Jung, J.E.; Lee, D. Verification and validation of STREAM/RAST-K for PWR analysis. Nucl. Eng. Technol. 2019, 51, 356–368. [Google Scholar] [CrossRef]
- Geelhood, K.; Luscher, W.C.; Cuta, J.M. FRAPTRAN-2.0: A Computer Code for the Transient Analysis of Oxide Fuel Rods; Pacifc Northwest National Laboratory: Richland, WA, USA, 2016.
- Cherezov, A. Fuel Rod Analysis Programming Interface for a Loosely Coupled Multiphysics System. In Proceedings of the American Nuclear Society Annual Meeting, Chicago, IL, USA, 16–19 November 2020; pp. 1331–1334. [Google Scholar]
- Cacuci, D. Handbook of Nuclear Engineering; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Lassmann, K.; Hohlefeld, F. The revised URGAP model to describe the gap conductance between fuel and cladding. Nucl. Eng. Des. 1987, 103, 215–221. [Google Scholar] [CrossRef]
- Ross, A.; Stoute, R. Heat Transfer Coefficient between UO2 and Zircaloy-2; CRFD-1075; Atomic Energy of Canada Limited: Chalk River, ON, Cananda, 1962. [Google Scholar]
- Trott, D.; Rader, D.; Castaneda, J.; Torczynski, J.; Gallis, M. Experimental Measurements of Thermal Accommodation Coefficients for Microscale Gas-Phase Heat Transfer. In Proceedings of the 39th AIAA Thermophysics Conference, Session: TP-6: Thermophysical Properties, Reno, NV, USA, 8–12 January 2007. [Google Scholar]
- D’Auria, F.D.; Reventos, F.; Sjoberg, A.; Sandervag, O.; Anhert, C.; Verdu, G.; Hadek, J.; Ivanov, K.; Uddin, R.; Sartoti, E.; et al. Neutronics/Thermal-Hydraulics Coupling in LWR Technology: State-of-the-Art Report (REAC-SOAR); OECD NEA 1734/01; OECD: Paris, France, 2004. [Google Scholar]
- Choe, J.; Sooyoung, C.; Jinsu, P.; Hyunsuk, L.; Matthieu, L.; Cheol, S.H.; Soo, L.H.; Deokjung, L. Verification of Asymmetric Fuel Assembly Treatment in STREAM/RAST-K 2.0. In Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Portland, OR, USA, 25–29 August 2019. [Google Scholar]
- Hamilton, S.; Berrill, M.; Clarno, K.T.; Pawlowski, R.; Toth, A.; Kelley, C.T.; Evans, T.M.; Philip, B. An assessment of coupling algorithms for nuclear reactor core physics simulations. J. Comput. Phys. 2016, 311, 241–257. [Google Scholar] [CrossRef] [Green Version]
- Horelik, N. MIT Benchmark for Evaluation and Validation of Reactor Simulations (BEAVRS), Version 2.0; MIT Computational Reactor Physics Group, Massachusetts Institute of Technology: Cambridge, MA, USA, 2016. [Google Scholar]
- Choi, S.; Lee, C.; Lee, D. Resonance Treatment using Pin-Based Pointwise Energy Slowing-Down Method. J. Comput. Phys. 2017, 330, 134–155. [Google Scholar] [CrossRef] [Green Version]
- Bohn, M. FRACAS: A Subcode for the Analysis of Fuel Pellet-Cladding Mechanical Interaction; Idaho National Engineering Laboratory: Idaho Falls, ID, USA, 1977.
- Lee, H.; Kim, W.; Zhang, P.; Lemaire, M.; Khassenov, A.; Yu, J.; Jo, Y.; Park, J.; Lee, D. MCS—A Monte Carlo Particle Transport Code for Large-Scale Power Reactor Analysis. Ann. Nucl. Energy 2020, 139, 107276. [Google Scholar] [CrossRef]
- Wysocki, A.; Hu, J.; Salko, R.; Kochunas, B. Improvement of CTF for RIA Analysis. In Proceedings of the American Nuclear Society Winter Meeting, (Public Access through US Department of Energy), Nashville, TN, USA, 16–19 November 2020. [Google Scholar]
- Downar, T.; Xu, Y.; Seker, V.; Hudson, N. PARCS v3.0 U.S.NRC Core Neutronics Simulator User Manual; UM-NERS-09-0001; Purdue University: West Lafayette, IN, USA, 2010. [Google Scholar]
- Diamond, D.; Bromley, B.P.; Aronson, A.L. Studies of the Rod Ejection Accident in a PWR; Brookhaven National Laboratory: Upton County, TX, USA, 2002.
- Jeong, E. Verification and Validation for Transient Calculation of STREAM/RAST-K 2.0. Master’s Thesis, Department of Nuclear Engineering, Graduate School of UNIST, Ulsan, Korea, 2018; p. 46. [Google Scholar]
- Jang, J.; Cherezov, A.; Jo, Y.; Lee, D. Verification of hexagonal transient solver implemented in RAST-K with OCED/NEA benchmark problem of KALININ-3 NPP. In Proceedings of the Transactions of the Korean Nuclear Society Autumn Meeting, Changwon, Korea, 22–23 October 2020. [Google Scholar]
- Jo, Y.; Shin, H. Low power transient analysis of PWR reload core with fixed neutron source via 3-D nodal diffusion code RAST-K. Ann. Nucl. Energy 2020, 150, 107742. [Google Scholar] [CrossRef]
From/To | RAST-K | FRAPI | CTH1D |
---|---|---|---|
RAST-K | - | - | |
FRAPI | , | - | |
CTH1D | , | - |
Name | Description | |
---|---|---|
A | alloc | allocation of variables x and u |
I | init | initial steady-state calculation |
N | next | moving forward on a time step h |
S | save | saving of a state vector x |
L | load | loading of the saved state vector x |
U | update | update of the feedback vector u |
D | free | deallocation of the variables |
Location | Bank Type | , pcm |
---|---|---|
H-8 | D | 49 |
K-8 | A | 175 |
K-6 | C | 319 |
H-2 | C | 360 |
K-2 | B | 589 |
M-4 | D | 1377 |
Parameter | Units | Dyn | Const | Limits | |
---|---|---|---|---|---|
147 | 148 | 0 | - | ||
cal/g | 90 | 91 | 1 | 200 | |
564 | 658 | 95 | - | ||
°C | 1543 | 1588 | 45 | 2670 | |
°C | 531 | 466 | −64 | 1649 | |
% | 2.9 | 2.5 | −0.4 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherezov, A.; Park, J.; Kim, H.; Choe, J.; Lee, D. A Multi-Physics Adaptive Time Step Coupling Algorithm for Light-Water Reactor Core Transient and Accident Simulation. Energies 2020, 13, 6374. https://doi.org/10.3390/en13236374
Cherezov A, Park J, Kim H, Choe J, Lee D. A Multi-Physics Adaptive Time Step Coupling Algorithm for Light-Water Reactor Core Transient and Accident Simulation. Energies. 2020; 13(23):6374. https://doi.org/10.3390/en13236374
Chicago/Turabian StyleCherezov, Alexey, Jinsu Park, Hanjoo Kim, Jiwon Choe, and Deokjung Lee. 2020. "A Multi-Physics Adaptive Time Step Coupling Algorithm for Light-Water Reactor Core Transient and Accident Simulation" Energies 13, no. 23: 6374. https://doi.org/10.3390/en13236374
APA StyleCherezov, A., Park, J., Kim, H., Choe, J., & Lee, D. (2020). A Multi-Physics Adaptive Time Step Coupling Algorithm for Light-Water Reactor Core Transient and Accident Simulation. Energies, 13(23), 6374. https://doi.org/10.3390/en13236374