Marginal Uncertainty Cost Functions for Solar Photovoltaic, Wind Energy, Hydro Generators, and Plug-In Electric Vehicles
Abstract
:1. Introduction
2. Concept of Uncertainty Cost Functions from Previous Studies
2.1. Uncertainty Cost Due to Underestimate
2.2. Uncertainty Cost Due to Overestimate
3. Presentation of Uncertainty Cost Functions of PVG, WEG, PEV, and Run-of-the-River Hydro Generators (RHG)
3.1. Photovoltaic Generation UCF
- Condition A:
- Condition B:
- is the penalty cost coefficient due to underestimate in the PVG for generator i,
- is the maximum power output of the PVG i,
- is the penalty cost coefficient due to overestimate in the PVG for generator i,
- is the scheduled PV power set by Economic Dispatch (ED) model in generator i,
- is the location parameter of the log-normal distribution,
- is the scale parameter of the log-normal distribution, and
- is the error function.
3.1.1. Uncertainty Cost Due to Underestimate in PVG Case,
3.1.2. Uncertainty Cost Due to Overestimate in PVG Case,
3.1.3. Uncertainty Cost Due to Underestimate in PVG Case,
3.1.4. Uncertainty Cost Due to Overestimate in PVG Case,
3.2. Wind Energy Generation UCF
- is the penalty cost coefficient due to underestimate in the WEG for generator i,
- is the penalty cost coefficient due to overestimate in the WEG for generator i,
- is the maximum power of the WEG generator i,
- is the scheduled WEG power set by ED model in generator i,
- is the rated wind speed,
- is the WEG cut-in wind speed,
- is the WEG cut-out wind speed, and
- is a Rayleigh PDF scale parameter.
3.2.1. Uncertainty Cost Due to Underestimate in WEG Case
3.2.2. Uncertainty Cost Due to Overestimate in WEG Case
3.3. Plug-in Electric Vehicles UCF
- is the penalty cost coefficient due to underestimate in the PEV in node i,
- is the penalty cost coefficient due to overestimate in the PEV in node i,
- is the scheduled PEVs power set by ED model in node i,
- is the mean of the PEVs power, and
- is the standard deviation of the PEVs power.
3.3.1. Uncertainty Cost Due to Underestimate in PEV Case
3.3.2. Uncertainty Cost Due to Overestimate in PEV Case
3.4. Run-of-the-River Hydro Generators UCF
- is the penalty cost coefficient due to underestimate in the RHG in node i,
- is the penalty cost coefficient due to overestimate in the RHG in node i,
- is the scheduled RHG power set by ED model in node i,
- is the maximum RHG power generation capacity generator in node i,
- is the mean value of discharge
- is the standard deviation of discharge,
- is water density in ,
- is hydro turbine efficiency,
- is electric generator efficiency,
- is generator-turbine coupling efficiency,
- is the height difference in the power station in meters,
- is the exponential integral function, and
- is defined as follows:
3.4.1. Uncertainty Cost Due to Underestimate in Run-of-the-River Hydro Generators Case
3.4.2. Uncertainty Cost Due to Overestimate in RHG Case
4. Formulation and Application of Marginal Cost Functions of PVG, WEG, PEV, and RHG
4.1. Marginal Uncertainty Cost Function for PVG
4.1.1. When
4.1.2. When
4.2. Marginal Uncertainty Cost Function for WEG
4.3. Marginal Uncertainty Cost Function for PEV
4.4. Marginal Uncertainty Cost Function for RHG
5. Application: Minimum Costs for PVG, WEG, PEV, and RHG Generation Units
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- García-Triviño, P.; Torreglosa, J.P.; Jurado, F.; Fernández Ramírez, L.M. Optimised operation of power sources of a PV/battery/hydrogen-powered hybrid charging station for electric and fuel cell vehicles. IET Renew. Power Gener. 2019, 13, 3022–3032. [Google Scholar] [CrossRef]
- Hernández, J.; Ruiz-Rodriguez, F.; Jurado, F. Modelling and assessment of the combined technical impact of electric vehicles and photovoltaic generation in radial distribution systems. Energy 2017, 141, 316–332. [Google Scholar] [CrossRef]
- Torreglosa, J.P.; García-Triviño, P.; Fernández-Ramirez, L.M.; Jurado, F. Decentralized energy management strategy based on predictive controllers for a medium voltage direct current photovoltaic electric vehicle charging station. Energy Convers. Manag. 2016, 108, 1–13. [Google Scholar] [CrossRef]
- Hetzer, J.; Yu, D.C.; Bhattarai, K. An Economic Dispatch Model Incorporating Wind Power. IEEE Trans. Energy Convers. 2008, 23, 603–611. [Google Scholar] [CrossRef]
- Zhao, J.; Wen, F.; Dong, Z.Y.; Xue, Y.; Wong, K.P. Optimal Dispatch of Electric Vehicles and Wind Power Using Enhanced Particle Swarm Optimization. IEEE Trans. Ind. Inform. 2012, 8, 889–899. [Google Scholar] [CrossRef]
- Surender Reddy, S.; Bijwe, P.R.; Abhyankar, A.R. Real-Time Economic Dispatch Considering Renewable Power Generation Variability and Uncertainty Over Scheduling Period. IEEE Syst. J. 2015, 9, 1440–1451. [Google Scholar] [CrossRef]
- Arevalo, J.; Santos, F.; Rivera, S. Uncertainty cost functions for solar photovoltaic generation, wind energy generation, and plug-in electric vehicles: Mathematical expected value and verification by Monte Carlo simulation. Int. J. Power Energy Convers. 2019, 10, 171–207. [Google Scholar] [CrossRef]
- Molina, F.; Perez, S.; Rivera, S. Formulación de Funciones de Costo de Incertidumbre en Pequeñas Centrales Hidroeléctricas dentro de una Microgrid. Rev. Ing. USBMed 2017, 8, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Vargas, S.; Rodriguez, D.; Rivera, S. Mathematical Formulation and Numerical Validation of Uncertainty Costs for Controllable Loads. Rev. Int. Métodos Numér. Calc. Diseño Ing. 2019, 35. [Google Scholar] [CrossRef]
- Bernal, J.; Neira, J.; Rivera, S. Mathematical Uncertainty Cost Functions for Controllable Photo-Voltaic Generators Considering Uniform Distributions. WSEAS Trans. Math. 2019, 18, 137–142. [Google Scholar]
- Martinez, C.; Rivera, S. Modelación Cuadrática de Costos de Incertidumbre para Generación Renovable y su aplicación en el Despacho Económico. Rev. MATUA 2018, 5, 1. [Google Scholar]
- Arévalo, J.; Santos, F.; Rivera, S. Application of Analytical Uncertainty Costs of Solar, Wind and Electric Vehicles in Optimal Power Dispatch. Ingenieria 2017, 22, 324–346. [Google Scholar] [CrossRef] [Green Version]
- Guzman, W.; Osorio, S.; Rivera, S. Modelado de cargas controlables en el despacho de sistemas con fuentes renovables y vehículos eléctricos. Ing. Region. 2017, 17, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Kayalvizhi, S.; Kumar, D.M.V. Stochastic Optimal Power Flow in Presence of Wind Generations Using Harmony Search Algorithm. In Proceedings of the 2018 20th National Power Systems Conference (NPSC), Tiruchirappalli, India, 14–16 December 2018; pp. 1–6. [Google Scholar]
- Rivera, S.; Torres, J. Optimal energy dispatch in multiple periods of time considering the variability and uncertainty of generation from renewable sources/Despacho de energía óptimo en múltiples periodos de tiempo considerando la variabilidad y la incertidumbre de la generación a partir de fuentes renovables. Rev. Prospect. 2018, 16, 75–81. [Google Scholar]
- Al-Sumaiti, A.S.; Ahmed, M.H.; Rivera, S.; El Moursi, M.S.; Salama, M.M.A.; Alsumaiti, T. Stochastic PV model for power system planning applications. IET Renew. Power Gener. 2019, 13, 3168–3179. [Google Scholar] [CrossRef]
- Zhang, N.; Behera, P.K.; Williams, C. Solar radiation prediction based on particle swarm optimization and evolutionary algorithm using recurrent neural networks. In Proceedings of the 2013 IEEE International Systems Conference (SysCon), Orlando, FL, USA, 15–18 April 2013; pp. 280–286. [Google Scholar]
- Guo, Q.; Han, J.; Yoon, M.; Jang, G. A study of economic dispatch with emission constraint in smart grid including wind turbines and electric vehicles. In Proceedings of the 2012 IEEE Vehicle Power and Propulsion Conference, Seoul, Korea, 9–12 October 2012; pp. 1002–1005. [Google Scholar]
- Xie, F.; Huang, M.; Zhang, W.; Li, J. Research on Electric Vehicle Charging Station Load Forecasting. In Proceedings of the 2011 International Conference on Advanced Power System Automation and Protection, Beijing, China, 16–20 October 2011; Volume 3. [Google Scholar] [CrossRef]
- Sufen, T.; Youbing, Z.; Jun, Q. Impact of electric vehicles as interruptible load on economic dispatch incorporating wind power. In Proceedings of the International Conference on Sustainable Power Generation and Supply (SUPERGEN 2012), Hangzhou, China, 8–9 September 2012; pp. 1–5. [Google Scholar]
- Montanari, R. Criteria for the economic planning of a low power hydroelectric plant. Renew. Energy 2003, 28, 2129–2145. [Google Scholar] [CrossRef]
- Cabus, P. River flow prediction through rainfall–runoff modelling with a probability-distributed model (PDM) in Flanders, Belgium. Agric. Water Manag. 2008, 95, 859–868. [Google Scholar] [CrossRef]
- Mujere, N. Flood Frequency Analysis Using the Gumbel Distribution. Int. J. Comput. Sci. Eng. 2011, 3, 2774–2778. [Google Scholar]
- Mankiw, N.G. Principios de Economía, 6th ed.; Cengage Learning: Boston, MA, USA, 2012. [Google Scholar]
- Chapra, S.C. Applied Numerical Methods with MatLab, 4th ed.; McGraw-Hill: New York, NY, USA, 2017. [Google Scholar]
- Stevenson, J.J.G.W.D. Análisis de Sistemas de Potencia, 1st ed.; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Zimmerman, R.D.; Murillo-Sánchez, C.E. MATPOWER User’s Manual; Cornell University: Ithaca, NY, USA, 2020. [Google Scholar] [CrossRef]
Minimum Dispatch Costs | |||
---|---|---|---|
Second Derivative Sign | |||
Type of Source | Dispatched Power (MW) | Uncertainty Cost ($) | for Positive Values |
of Dispatched Power | |||
PVG | 23.0009 | 218.2101 | Positive or zero |
WEG | 119.5289 | 2039.0969 | Positive or zero |
PEV | 19.2568 | 18.7754 | Positive or zero |
RHG | 2.3088 | 8,759,484.27 | Positive or zero |
WEG Case | RHG Case | PVG Case | PEV Case | ||||
---|---|---|---|---|---|---|---|
Parameter | Value | Parameter | Value | Parameter | Value | Parameter | Value |
5 m/s | 1000 kg/m3 | 65 MW | 19.54 MW | ||||
15 m/s | 90% | 1000 W/m | 0.54 MW | ||||
25 m/s | 95% | 150 W/m | 30 mu/MW | ||||
150 MW | 98% | 100 MW | 70 mu/MW | ||||
15 MW/m/s | h | 20 m | 6 | ||||
−75 MW | 15.23 m/s | 0,25 | |||||
15.95 m/s | 1.15 m/s | 30 mu/MW | |||||
30 mu/MW | 30 mu/MW | 70 mu/MW | |||||
70 mu/MW | 70 mu/MW |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes, E.D.; Bretas, A.S.; Rivera, S. Marginal Uncertainty Cost Functions for Solar Photovoltaic, Wind Energy, Hydro Generators, and Plug-In Electric Vehicles. Energies 2020, 13, 6375. https://doi.org/10.3390/en13236375
Reyes ED, Bretas AS, Rivera S. Marginal Uncertainty Cost Functions for Solar Photovoltaic, Wind Energy, Hydro Generators, and Plug-In Electric Vehicles. Energies. 2020; 13(23):6375. https://doi.org/10.3390/en13236375
Chicago/Turabian StyleReyes, Elkin D., Arturo S. Bretas, and Sergio Rivera. 2020. "Marginal Uncertainty Cost Functions for Solar Photovoltaic, Wind Energy, Hydro Generators, and Plug-In Electric Vehicles" Energies 13, no. 23: 6375. https://doi.org/10.3390/en13236375
APA StyleReyes, E. D., Bretas, A. S., & Rivera, S. (2020). Marginal Uncertainty Cost Functions for Solar Photovoltaic, Wind Energy, Hydro Generators, and Plug-In Electric Vehicles. Energies, 13(23), 6375. https://doi.org/10.3390/en13236375