Influence of Clumps-Weighted Moorings on a Spar Buoy Offshore Wind Turbine
Abstract
:1. Introduction
2. Methodology
2.1. OC3-Hywind Spar-Buoy Floating Wind Turbine Description
2.2. Hydrodynamic Model
- The fluid is assumed to be inviscid and incompressible; the flow irrotational. These assumptions ensure the existence of a velocity potential, which is a function of time and space.
- Small amplitude waves and small displacements/rotations of the floating body. These assumptions permit linearizing the dynamic free surface boundary condition and simplifying the kinematic boundary condition at the body.
- Steady-state condition. The velocity potential can be written isolating the time dependence and the space dependence. The space-depending part can be divided in two components which are solutions of two different Boundary Value Problems (BVPs): diffraction (platform in static condition and wave motion) and radiation (platform motion with no waves). Moreover, the diffraction potential can be divided, due to the linearity assumption, into incident and scattering wave potentials.
2.3. Response Amplitude Operator
3. Results
3.1. Simulation without Clump Weights
3.2. Simulation with Clump Weights
3.3. Cables Response
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Taveira-Pinto, F.; Rosa-Santos, P.; Fazeres-Ferradosa, T. Marine renewable energy. Renew. Energy 2020, 150, 1160–1164. [Google Scholar] [CrossRef]
- Chavez, C.E.A.; Stratigaki, V.; Wu, M.; Troch, P.; Schendel, A.; Welzel, M.; Villanueva, R.; Schlurmann, T.; De Vos, L.; Kisacik, D.; et al. Large-scale experiments to improve monopile scour protection design adapted to climate change—The PROTEUS project. Energies 2019, 12, 1709. [Google Scholar] [CrossRef] [Green Version]
- Walsh, C. Offshore wind in Europe. Refocus 2019, 3, 14–17. [Google Scholar] [CrossRef]
- Robertson, A.N.; Jonkman, J.M. Loads analysis of several offshore floating wind turbine concepts. In Proceedings of the 21st International Offshore and Polar Engineering Conference, Maui, HI, USA, 19–24 June 2011; pp. 443–450. [Google Scholar]
- Roddier, D.; Cermelli, C.; Aubault, A.; Weinstein, A. WindFloat: A floating foundation for offshore wind turbines. J. Renew. Sustain. Energy 2010, 2, 033104. [Google Scholar] [CrossRef]
- Jonkman, J. Definition of the Floating System for Phase IV of OC3 Definition of the Floating System for Phase IV of OC3; NREL Technical Report NREL/TP-500-47535; National Renewable Energy Laboratory: Golden, CO, USA, 2010. Available online: https://www.nrel.gov/docs/fy10osti/47535.pdf (accessed on 20 February 2020).
- Karimirad, M.; Moan, T. Feasibility of the application of a spar-type wind turbine at a moderate water depth. Energy Procedia 2012, 24, 340–350. [Google Scholar] [CrossRef] [Green Version]
- Sethuraman, L.; Venugopal, V. Hydrodynamic response of a stepped-spar floating wind turbine: Numerical modelling and tank testing. Renew. Energy 2013, 52, 160–174. [Google Scholar] [CrossRef]
- Utsunomiya, T.; Sato, T.; Matsukuma, H.; Yago, K. Experimental validation for motion of a SPAR-type floating offshore wind turbine using 1/22.5 scale model. Proc. Int. Conf. Offshore Mech. Arct. Eng. OMAE 2009, 4, 951–959. [Google Scholar] [CrossRef]
- Duan, F.; Hu, Z.; Wang, J. Investigation of the VIMs of a spar-type FOWT using a model test method. J. Renew. Sustain. Energy 2016, 8, 063301. [Google Scholar] [CrossRef] [Green Version]
- Adam, F.; Myland, T.; Schuldt, B.; Großmann, J.; Dahlhaus, F. Evaluation of internal force superposition on a TLP for wind turbines. Renew. Energy 2014, 71, 271–275. [Google Scholar] [CrossRef]
- Vita, L.; Ramachandran, G.K.V.; Krieger, A.; Kvittem, M.I.; Merino, D.; Cross-Whiter, J.; Ackers, B.B. Comparison of numerical models and verification against experimental data, using Pelastar TLP concept. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering OMAE, St. John’s, NL, Canada, 31 May–5 June 2015; pp. 1–11. [Google Scholar] [CrossRef]
- Karimirad, M.; Michailides, C. V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology. Renew. Energy 2015, 83, 126–143. [Google Scholar] [CrossRef] [Green Version]
- Robertson, H.S.A.; Jonkman, J.; Masciola, M. Definition of the Semisubmersible Floating System for Phase II of OC4; Technical Report NREL/TP-5000-60601; National Renewable Energy Laboratory: Golden, CO, USA, 2014. Available online: https://www.nrel.gov/docs/fy14osti/60601.pdf (accessed on 20 February 2020).
- Chen, D.; Gao, P.; Huang, S.; Fan, K.; Zhuang, N. Dynamic response and mooring optimization of spar-type substructure under combined action of wind, wave, and current. J. Renew. Sustain. Energy 2017, 9, 063307. [Google Scholar] [CrossRef]
- Driscoll, F.; Jonkman, J.; Robertson, A.; Sirnivas, S.; Skaare, B. Validation of a FAST model of the statoil-hywind demo floating wind turbine. Energy Procedia 2016, 94, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Tu, Y.; Wang, W.; Qian, G. Numerical analysis of a catenary mooring system attached by clump masses for improving the wave-resistance ability of a spar buoy-type floating offshore wind turbine. Appl. Sci. 2019, 9, 1075. [Google Scholar] [CrossRef] [Green Version]
- Hegseth, J.M.; Bachynski, E.E.; Martins, J.R.R.A. Design optimization of spar floating wind turbines considering different control strategies. Mar. Struct. 2020, 72, 102771. [Google Scholar] [CrossRef]
- Muskulus, M.; Schafhirt, S. Design optimization of wind turbine support Structures—A Review. J. Ocean. Wind Energy 2014, 1, 12–22. [Google Scholar]
- Jonkman, J.M.; Buhl, M.L., Jr. FAST User’s Guide; National Renewable Energy Laboratory: Golden, CO, USA, 2005.
- Larsen, T.; Hansen, A. How 2 HAWC2, the User’s Manual; Risø DTU National Laboratory: Roskilde, Denmark, 2015; Volume 2. [Google Scholar]
- Barbanti, G.; Marino, E.; Borri, C. Mooring system optimization for a spar-buoy wind turbine in rough wind and sea conditions. Lect. Notes Civ. Eng. 2019, 27, 87–98. [Google Scholar] [CrossRef]
- Yuan, Z.; Incecik, A.; Ji, C. Numerical study on a hybrid mooring system with clump weights and buoys. Ocean. Eng. 2014, 88, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hordvik, T. Design Analysis and Optimisation of Mooring System for Floating Wind Turbines; Norges Teknisk-Naturvitenskapelige Universitet, Fakultet for Ingeniørvitenskap og Teknologi, Institutt for Marin Teknikkm: Trondheim, Norway, 2011. [Google Scholar]
- Morison, J.R.; Johnson, J.W.; O’Brien, M.P. Experimental studies of forces on piles. Coast. Eng. Proc. 2000, 1, 25. [Google Scholar] [CrossRef] [Green Version]
- Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5-MW reference wind turbine for offshore system development. Am. J. Med. Genet. 2009, 107, 317–324. [Google Scholar] [CrossRef]
- Robertson, A.N.; Wendt, F.; Fonkman, J.M.; Popko, W.; Dagher, H.; Gueydon, S.; Qvist, J.; Vittori, F.; Uzunoglu, E.; Harries, R.; et al. OC5 project phase II: Validation of global loads of the deepcwind floating semisubmersible wind turbine. Energy Procedia 2017, 137, 38–57. [Google Scholar] [CrossRef]
- Hall, M. MoorDyn User’s Guide; Department of Mechanical Engineering, University of Maine: Orono, ME, USA, 2017. [Google Scholar]
- Hall, M.; Buckham, B.; Crawford, C. Evaluating the importance of mooring line model fidelity in floating offshore wind turbine simulations. Wind Energy 2013, 17, 1835–1853. [Google Scholar] [CrossRef]
- Wendt, F.; Robertson, A.; Jonkman, J.; Hayman, G. Verification of New Floating Capabilities in FAST v8 Preprint. In Proceedings of the 33rd Wind Energy Symposium, Proc AIAA SciTech 2015, Kissimmee, FL, USA, 5–9 January 2015; p. 1204. [Google Scholar]
- Jonkman, J.M.; Robertson, A.N.; Hayman, G.J. HydroDyn User’s Guide and Theory Manual HydroDyn User’s Guide and Theory Manual; National Renewable Energy Laboratory: Golden, CO, USA, 2014.
- Matha, D.; Schlipf, M.; Pereira, R. Challenges in Simulation of Aerodynamics, Hydrodynamics, and Mooring-Line Dynamics of Floating Offshore Wind Turbines. In Proceedings of the 21st International Offshore and Polar Engineering Conference, Maui, HI, USA, 19–24 June 2011. [Google Scholar]
- WAMIT Inc. Wamit user manual. J. Chem. Inform. Model. 2013, 53, 1689–1699. [Google Scholar]
- Marino, E.; Lugni, C.; Borri, C. The role of the nonlinear wave kinematics on the global responses of an OWT in parked and operating conditions. J. Wind Eng. Ind. Aerodyn. 2013, 123, 363–376. [Google Scholar] [CrossRef]
- Paulsen, B.T.; Bredmose, H.; Bingham, H.B.; Jacobsen, N.G. Forcing of a bottom-mounted circular cylinder by steep regular water waves at finite depth. J. Fluid Mech. 2014, 755, 1–34. [Google Scholar] [CrossRef]
- Marino, E.; Giusti, A.; Manuel, L. Offshore wind turbine fatigue loads: The influence of alternative wave modeling for different turbulent and mean winds. Renew. Energy 2017, 102, 157–169. [Google Scholar] [CrossRef]
- Mockute, A.; Marino, E.; Lugni, C.; Borri, C. Comparison of nonlinear wave-loading models on rigid cylinders in regular waves. Energies 2019, 12, 4022. [Google Scholar] [CrossRef] [Green Version]
- Marino, E.; Lugni, C.; Borri, C. A novel numerical strategy for the simulation of irregular nonlinear waves and their effects on the dynamic response of offshore wind turbines. Comput. Methods Appl. Mech. Eng. 2013, 255, 275–288. [Google Scholar] [CrossRef]
- Marino, E.; Borri, C.; Peil, U. A fully nonlinear wave model to account for breaking wave impact loads on offshore wind turbines. J. Wind Eng. Ind. Aerodyn. 2011, 99, 483–490. [Google Scholar] [CrossRef]
- Chuang, Z.; Liu, S.; Lu, Y. Influence of second order wave excitation loads on coupled response of an offshore floating wind turbine. Int. J. Nav. Archit. Ocean. Eng. 2020, 12, 367–375. [Google Scholar] [CrossRef]
- Orszaghova, J.; Taylor, P.H.; Wolgamot, H.; Madsen, F.J.; Bredmose, H. Second and third order sub-harmonic wave responses of a floating wind turbine. In Proceedings of the 35th International Work, Water Waves and Floating Bodies, Seoul, Korea, 24–28 August 2020; pp. 26–29. [Google Scholar]
- Xu, K.; Shao, Y.; Gao, Z.; Moan, T. A study on fully nonlinear wave load effects on floating wind turbine. J. Fluids Struct. 2019, 88, 216–240. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, M.; Shao, Y.; Gao, Z.; Moan, T. Effect of wave nonlinearity on fatigue damage and extreme responses of a semi-submersible floating wind turbine. Appl. Ocean. Res. 2019, 91, 101879. [Google Scholar] [CrossRef]
- Ferri, G.; Marino, E.; Borri, C. Optimal dimensions of a semisubmersible floating platform for a 10 MW wind turbine. Energies 2020, 13, 3092. [Google Scholar] [CrossRef]
- Hegseth, J.M.; Bachynski, E.E. A semi-analytical frequency domain model for efficient design evaluation of spar floating wind turbines. Mar. Struct. 2019, 64, 186–210. [Google Scholar] [CrossRef]
- Faltinsen, O.M.; Michelsen, F.C. Motions of Large Structures in Waves at Zero Froude Number; Det Norske Veritas: Oslo, Norway, 1975; pp. 2–18. [Google Scholar]
- Ramachandran, G.K.V.; Robertson, A.; Jonkman, J.M.; Masciola, M.D. Investigation of response amplitude operators for floating offshore wind turbines. In Proceedings of the 23rd International Ocean, Offshore and Polar Engineering Conference, Anchorage, AK, USA, 30 June–5 July 2013; pp. 369–376. [Google Scholar]
Tower top height above SWL (Sea Water Level) | 87.6 m |
Tower Mass | 249,718 kg |
Platform total draft | 120 m |
Platform draft above SWL | 10 m |
Platform mass | 7,466,330 kg |
Platform diameter above taper | 6.5 m |
Platform diameter below taper | 9.4 m |
Taper depth below SWL | 4–12 m |
CM Location Below SWL Along Platform Centerline | 89.9155 m |
Platform Roll Inertia about CM (Center of Mass) | 4,229,230,000 kgm2 |
Platform Pitch Inertia about CM | 4,229,230,000 kgm2 |
Platform Yaw Inertia about Platform Centerline | 164,230,000 kgm2 |
Number of mooring lines | 3 |
Angle between adjacent lines | 120° |
Depth to Anchors Below SWL (Water Depth) | 320 m |
Depth to Fairleads Below SWL | 70 m |
Radius to Anchors from Platform Centerline | 853.87 m |
Radius to Fairleads from Platform Centerline | 5.2 m |
Unstretched Mooring Line Length | 902.2 m |
Mooring Line Diameter | 0.09 m |
Equivalent Mooring Line Mass Density | 77.7066 kg/m |
Equivalent Mooring Line Extensional Stiffness | 384,243 kN |
Additional Yaw Spring Stiffness | 98,340,000 Nm/rad |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruschi, N.; Ferri, G.; Marino, E.; Borri, C. Influence of Clumps-Weighted Moorings on a Spar Buoy Offshore Wind Turbine. Energies 2020, 13, 6407. https://doi.org/10.3390/en13236407
Bruschi N, Ferri G, Marino E, Borri C. Influence of Clumps-Weighted Moorings on a Spar Buoy Offshore Wind Turbine. Energies. 2020; 13(23):6407. https://doi.org/10.3390/en13236407
Chicago/Turabian StyleBruschi, Niccolo, Giulio Ferri, Enzo Marino, and Claudio Borri. 2020. "Influence of Clumps-Weighted Moorings on a Spar Buoy Offshore Wind Turbine" Energies 13, no. 23: 6407. https://doi.org/10.3390/en13236407
APA StyleBruschi, N., Ferri, G., Marino, E., & Borri, C. (2020). Influence of Clumps-Weighted Moorings on a Spar Buoy Offshore Wind Turbine. Energies, 13(23), 6407. https://doi.org/10.3390/en13236407