The Potential Role of Power-to-Gas Technology Connected to Photovoltaic Power Plants in the Visegrad Countries—A Case Study
Abstract
:1. Introduction
1.1. The Use of Renewable Energy Worldwide
1.2. Utilizing Biogas and the Potentials of Power-to-Gas Technology
- Technology uses alkaline, PEME (proton exchange membrane electrolysis) and solid oxide electrolysis methods. Of the three techniques, the alkaline one has been in use for the longest time. The PEME method is more favorable to be used with weather-dependent sources of renewable energy, such as solar energy, because it can support a more flexible system, for example by starting up more quickly. In addition, it is capable of an approximately 5% higher operational efficiency [11,73]. Solid oxide electrolysis requires even less electric power compared to PEME, but its system stability is lower, while its heat requirement is higher [73].
- Biological and catalytic methanation are typically used in power-to-gas technology. The catalytic (also known as chemical or Sabatier) method has been used since as early as the 1970s. Nevertheless, biological methanation is more preferable because it allows an approximately 20% higher carbon dioxide conversion rate than in the case of the catalytic procedure [74]. The biological method is more flexible (i.e., it can be started more quickly, for example), and its pressure and heat requirements are also lower than those of the catalytic process. For use with VRE sources, biological methanation is recommended due to its greater operational flexibility [75,76].
2. Methods and Details of the Study
2.1. The Scope of the Investigation
2.2. The Data Used in the Calculations
2.3. The Calculations
3. Results
3.1. Necessary Regulation in the Monitored PV Capacities in the Visegrad Countries
3.2. A Power-to-Gas Case Study of Hungary
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
a-Si | Amorphous silicon |
EU | European Union |
ENTSO-E | European Network of Transmission System Operators for Electricity |
EPS | Electric Power System |
HREM | Hybrid Renewable Energy Microgrid |
m-Si | Monocrystalline silicon |
NaS | Natrium-Sulfur |
PV | Photovoltaic |
PEME | Polymer Electrolyte Membrane Electrolysis |
p-Si | Polycrystalline silicon |
PVGIS | JRC Photovoltaic Geographical Information System |
TSO | Transmission System Operator |
VRE | Variable renewable energy |
References
- SolarPower Europe. Global Market Outlook for Solar Power; SolarPower Europe: Brussels, Belgium, 2019. [Google Scholar]
- REN21. Renewable Energy Policy Network for the 21st Century. In Renewables 2019 Global Status Report—REN21; REN21: Paris, France, 2019. [Google Scholar]
- Rodríguez, R.A.; Becker, S.; Andresen, G.B.; Heide, D.; Greiner, M. Transmission needs across a fully renewable European power system. Renew. Energy 2014, 63, 467–476. [Google Scholar] [CrossRef] [Green Version]
- Bertsch, J.; Growitsch, C.; Lorenczik, S.; Nagl, S. Flexibility in Europe’s power sector—An additional requirement or an automatic complement? Energy Econ. 2016, 53, 118–131. [Google Scholar] [CrossRef] [Green Version]
- Cho, A. Energy’s tricky tradeoffs. Science 2010, 329, 786–787. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.Z.; Delucchi, M.A. Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 2011, 39, 1154–1169. [Google Scholar] [CrossRef]
- Szabó, D. Solar Technologies: Energy Storage Is Installed by the Utility (Napelemek: Energiatárolókat Telepít a Közműszolgáltató). Available online: https://www.napi.hu/magyar_vallalatok/napelemek_energiatarolokat_telepit_a_kozmuszolgaltato.674558.html (accessed on 28 October 2020).
- Fülöp, M. The First Domestic Public Energy Storage Unit Is Operating (Működik az első hazai közcélú energiatároló egység). Available online: https://www.villanylap.hu/hirek/4904-mukodik-az-elso-hazai-kozcelu-energiatarolo-egyseg (accessed on 28 October 2020).
- Cochran, J.; Bird, L.; Heeter, J.; Arent, D.J. Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience; National Renewable Energy Lab.(NREL): Golden, CO, USA, 2012. [Google Scholar]
- ENTSO-E. TYNDP 2018—Scenario Report. Available online: https://tyndp.entsoe.eu/tyndp2018/scenario-report (accessed on 28 October 2020).
- Blanco, H.; Faaij, A. A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage. Renew. Sustain. Energy Rev. 2018, 81, 1049–1086. [Google Scholar] [CrossRef]
- European Commission. Clean Energy for All Europeans; European Commission. Available online: https://ec.europa.eu/energy/topics/energy-strategy/clean-energy-all-europeans_en (accessed on 28 October 2020).
- National Renewable Energy Laboratory (NREL). Exploration of High-Penetration Renewable Electricity Futures; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2012; Volume 1. [Google Scholar]
- National Renewable Energy Laboratory (NREL). Renewable Electricity Generation and Storage Technologies; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2012. [Google Scholar]
- Hesse, H.; Schimpe, M.; Kucevic, D.; Jossen, A. Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids. Energies 2017, 10, 2107. [Google Scholar] [CrossRef] [Green Version]
- Schimpe, M.; Piesch, C.; Hesse, H.; Paß, J.; Ritter, S.; Jossen, A. Power Flow Distribution Strategy for Improved Power Electronics Energy Efficiency in Battery Storage Systems: Development and Implementation in a Utility-Scale System. Energies 2018, 11, 533. [Google Scholar] [CrossRef] [Green Version]
- Aneke, M.; Wang, M. Energy storage technologies and real life applications—A state of the art review. Appl. Energy 2016, 179, 350–377. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Liao, S.; Ai, X.; Yao, W.; Wen, J. Determining the Minimal Power Capacity of Energy Storage to Accommodate Renewable Generation. Energies 2017, 10, 468. [Google Scholar] [CrossRef] [Green Version]
- Zsiborács, H.; Hegedűsné Baranyai, N.; Vincze, A.; Háber, I.; Pintér, G. Economic and Technical Aspects of Flexible Storage Photovoltaic Systems in Europe. Energies 2018, 11, 1445. [Google Scholar] [CrossRef] [Green Version]
- Strbac, G.; Aunedi, M.; Pudjianto, D.; Djapic, P.; Teng, F.; Sturt, A.; Jackravut, D.; Sansom, R.; Yufit, V.; Brandon, N. Strategic Assessment of the Role and Value of Energy Storage Systems in the UK Low Carbon Energy Future; Imperial College London: London, UK, 2012. [Google Scholar]
- European Commission. EU Reference Scenario 2016; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- International Hydropower Association. 2017 Key Trends in Hydropower; International Hydropower Association: London, UK, 2017. [Google Scholar]
- International Renewable Energy Agency IRENA. Renewable Energy Capacity Statistics 2017; International Renewable Energy Agency IRENA: Abu Dhabi, UAE, 2017. [Google Scholar]
- Sandia National Laboratories. DOE Global Energy Storage Database. Office of Electricity Delivery & Energy Reliability. Available online: https://www.energystorageexchange.org/ (accessed on 28 October 2019).
- Union of the Electricity Industry–EURELECTRIC. Hydro in Europe: Powering Renewables Full Report; Union of the Electricity Industry: Brussels, Belgium, 2011. [Google Scholar]
- Gimeno-Gutiérrez, M.; Lacal-Arántegui, R. Assessment of the European potential for pumped hydropower energy storage based on two existing reservoirs. Renew. Energy 2015, 75, 856–868. [Google Scholar] [CrossRef]
- Mantzos, L.; Matei, N.A.; Mulholland, E.; Rózsai, M.; Tamba, M.; Wiesenthal, T. Joint Research Centre Data Catalogue. JRC-IDEES 2015. Available online: https://data.jrc.ec.europa.eu/dataset/jrc-10110-10001 (accessed on 28 October 2020).
- PANNON Pro Innovations Ltd. Practical Experiences of PV and Storage Systems n.d. Available online: https://ppis.hu/hu (accessed on 28 October 2019).
- International Hydropower Association. Pumped Storage Tracking Tool n.d. Available online: https://www.hydropower.org/hydropower-pumped-storage-tool (accessed on 28 October 2019).
- International Hydropower Association. Hydropower Status Report 2016; International Hydropower Association: London, UK, 2016. [Google Scholar]
- Gyalai-Korpos, M.; Zentkó, L.; Hegyfalvi, C.; Detzky, G.; Tildy, P.; Hegedűsné Baranyai, N.; Pintér, G.; Zsiborács, H. The Role of Electricity Balancing and Storage: Developing Input Parameters for the European Calculator for Concept Modeling. Sustainability 2020, 12, 811. [Google Scholar] [CrossRef] [Green Version]
- International Renewable Energy Agency. Electricity Storage and Renewables: Costs and Markets to 2030; International Renewable Energy Agency: Abu Dhabi, UAE, 2017. [Google Scholar]
- Zsiborács, H.; Baranyai, N.H.; Vincze, A.; Zentkó, L.; Birkner, Z.; Máté, K.; Pintér, G. Intermittent Renewable Energy Sources: The Role of Energy Storage in the European Power System of 2040. Electronics 2019, 8, 729. [Google Scholar] [CrossRef] [Green Version]
- Igazságügyi Minisztérium. Magyar Közlöny, 2019; évi 222. Szám; Igazságügyi Minisztérium: Budapest, Hungary, 2019. [Google Scholar]
- Kordmahaleh, A.A.; Naghashzadegan, M.; Javaherdeh, K.; Khoshgoftar, M. Design of a 25 MWe Solar Thermal Power Plant in Iran with Using Parabolic Trough Collectors and a Two-Tank Molten Salt Storage System. Int. J. Photoenergy 2017, 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Noman, A.M.; Addoweesh, K.E.; Alolah, A.I. Simulation and Practical Implementation of ANFIS-Based MPPT Method for PV Applications Using Isolated Ćuk Converter. Int. J. Photoenergy 2017, 2017, 3106734. [Google Scholar] [CrossRef] [Green Version]
- Daliento, S.; Chouder, A.; Guerriero, P.; Pavan, A.M.; Mellit, A.; Moeini, R.; Tricoli, P. Monitoring, Diagnosis, and Power Forecasting for Photovoltaic Fields: A Review. Int. J. Photoenergy 2017, 2017, 1356851. [Google Scholar] [CrossRef]
- Sefa, İ.; Demirtas, M.; Çolak, İ. Application of one-axis sun tracking system. Energy Convers. Manag. 2009, 50, 2709–2718. [Google Scholar] [CrossRef]
- REN21. Renewables 2018 Global Status Report—REN21; REN21: Paris, France, 2018. [Google Scholar]
- Nengroo, S.; Kamran, M.; Ali, M.; Kim, D.-H.; Kim, M.-S.; Hussain, A.; Kim, H.; Nengroo, S.H.; Kamran, M.A.; Ali, M.U.; et al. Dual Battery Storage System: An Optimized Strategy for the Utilization of Renewable Photovoltaic Energy in the United Kingdom. Electronics 2018, 7, 177. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.A. A realizable renewable energy future. Science 1999, 285, 687–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, A.; Lu, M.; Sun, P.; Lin, A.; Lu, M.; Sun, P. The Influence of Local Environmental, Economic and Social Variables on the Spatial Distribution of Photovoltaic Applications across China’s Urban Areas. Energies 2018, 11, 1986. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wu, D.; Yu, H.; Ma, W.; Jin, G. Field measurement and numerical simulation of combined solar heating operation modes for domestic buildings based on the Qinghai–Tibetan plateau case. Energy Build. 2018, 167, 312–321. [Google Scholar] [CrossRef]
- Alsafasfeh, M.; Abdel-Qader, I.; Bazuin, B.; Alsafasfeh, Q.; Su, W.; Alsafasfeh, M.; Abdel-Qader, I.; Bazuin, B.; Alsafasfeh, Q.; Su, W. Unsupervised Fault Detection and Analysis for Large Photovoltaic Systems Using Drones and Machine Vision. Energies 2018, 11, 2252. [Google Scholar] [CrossRef] [Green Version]
- Hosenuzzaman, M.; Rahim, N.A.; Selvaraj, J.; Hasanuzzaman, M.; Malek, A.B.M.A.; Nahar, A. Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew. Sustain. Energy Rev. 2015, 41, 284–297. [Google Scholar] [CrossRef]
- Roth, W. General Concepts of Photovoltaic Power Supply Systems; Fraunhofer Institute for Solar Energy Systems ISE: Freiburg, Germany, 2005; pp. 1–23. [Google Scholar]
- Kumar Sahu, B. A study on global solar PV energy developments and policies with special focus on the top ten solar PV power producing countries. Renew. Sustain. Energy Rev. 2015, 43, 621–634. [Google Scholar] [CrossRef]
- Elavarasan, R.M. The Motivation for Renewable Energy and its Comparison with Other Energy Sources: A Review. Eur. J. Sustain. Dev. Res. 2018, 3, em0076. [Google Scholar] [CrossRef]
- Zsiborács, H.; Pályi, B.; Pintér, G.; Popp, J.; Balogh, P.; Gabnai, Z.; Pető, K.; Farkas, I.; Baranyai, N.H.; Bai, A. Technical-economic study of cooled crystalline solar modules. Sol. Energy 2016, 140. [Google Scholar] [CrossRef] [Green Version]
- Benick, J.; Richter, A.; Muller, R.; Hauser, H.; Feldmann, F.; Krenckel, P.; Riepe, S.; Schindler, F.; Schubert, M.C.; Hermle, M.; et al. High-Efficiency n-Type HP mc Silicon Solar Cells. IEEE J. Photovolt. 2017, 7, 1171–1175. [Google Scholar] [CrossRef]
- Cosme, I.; Cariou, R.; Chen, W.; Foldyna, M.; Boukhicha, R.; i Cabarrocas, P.R.; Lee, K.D.; Trompoukis, C.; Depauw, V. Lifetime assessment in crystalline silicon: From nanopatterned wafer to ultra-thin crystalline films for solar cells. Sol. Energy Mater. Sol. Cells 2015, 135, 93–98. [Google Scholar] [CrossRef]
- Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar cell efficiency tables (version 48). Prog. Photovolt. Res. Appl. 2016, 24, 905–913. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency Technology Roadmap Solar Photovoltaic Energy, 2014th ed.; International Energy Agency: Paris, France, 2014; pp. 1–60.
- Krempasky, J. Semiconductors, Questions & Answers; Technical Publishing House: Budapest, Romania, 1977. [Google Scholar]
- Panasonic Corporation. Solar Cell Achieves World’s Highest Energy Conversion Efficiency of 25.6% at Research Level; Panasonic Corporation: Kadoma City, Japan, 2014. [Google Scholar]
- Verlinden, P.; Deng, W.; Zhang, X.; Yang, Y.; Xu, J.; Shu, Y.; Quan, P.; Sheng, J.; Zhang, S.; Bao, J. Strategy, development and mass production of high-efficiency crystalline Si PV modules. In Proceedings of the 6th World Conference on Photovoltaic Energy Conversion, Kyoto, Japan, 23–27 November 2014. [Google Scholar]
- Zsiborács, H.; Pályi, B.; Baranyai, H.N.; Veszelka, M.; Farkas, I.; Pintér, G. Energy performance of the cooled amorphous silicon photovoltaic (PV) technology. Idojaras 2016, 120, 415–430. [Google Scholar]
- Green, M.A.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Yoshita, M.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (version 54). Prog. Photovolt. 2019, 1–11. [Google Scholar] [CrossRef]
- SecondSol Inc. New and Used PV Module Prices. Available online: https://www.secondsol.com/de/index.htm (accessed on 28 October 2020).
- Kondo, M.; Yoshida, I.; Saito, K.; Matsumoto, M.; Suezaki, T.; Sai, H.; Matsui, T. Development of Highly Stable and Efficient Amorphous Silicon Based Solar Cells. In Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition, Paris, France, 30 September–4 October 2013; WIP: Villepinte, France, 2013; pp. 2213–2217. [Google Scholar]
- ÖKO-HAUS GmbH. Information on the Prices of a-Si Solar Modules, Price Quotation. Available online: https://www.oeko-haus.com/ (accessed on 28 October 2020).
- Enjavi-Arsanjani, M.; Hirbodi, K.; Yaghoubi, M. Solar Energy Potential and Performance Assessment of CSP Plants in Different Areas of Iran. Energy Procedia 2015, 69, 2039–2048. [Google Scholar] [CrossRef] [Green Version]
- Manoj Kumar, N.; Chopra, S.S.; Chand, A.A.; Elavarasan, R.M.; Shafiullah, G.M. Hybrid renewable energy microgrid for a residential community: A techno-economic and environmental perspective in the context of the SDG7. Sustainability 2020, 12, 3944. [Google Scholar] [CrossRef]
- Statista, I. Cumulative Solar Photovoltaic Capacity Globally as of 2017, by Select Country (in Gigawatts). 2018. Available online: https://www.statista.com/statistics/264629/existing-solar-pv-capacity-worldwide/ (accessed on 28 October 2019).
- Vokas, G.A.; Zoridis, G.C.; Lagogiannis, K.V. Single and Dual Axis PV Energy Production over Greece: Comparison Between Measured and Predicted Data. Energy Procedia 2015, 74, 1490–1498. [Google Scholar] [CrossRef] [Green Version]
- Eke, R.; Senturk, A. Performance comparison of a double-axis sun tracking versus fixed PV system. Sol. Energy 2012, 86, 2665–2672. [Google Scholar] [CrossRef]
- Solargis.com. Solar Resource Maps and GIS Data for 200+ Countries. 2017. Available online: https://solargis.com/maps-and-gis-data/overview (accessed on 28 October 2020).
- Bai, A.; Popp, J.; Balogh, P.; Gabnai, Z.; Pályi, B.; Farkas, I.; Pintér, G.; Zsiborács, H. Technical and economic effects of cooling of monocrystalline photovoltaic modules under Hungarian conditions. Renew. Sustain. Energy Rev. 2016, 60, 1086–1099. [Google Scholar] [CrossRef] [Green Version]
- Scarlat, N.; Dallemand, J.F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Kampman, B.; Leguijt, C.; Scholten, T.; Tallat-Kelpsaite, J. Optimal Use of Biogas from Waste Streams: An Assessment of the Potential of Biogas from Digestion in the EU Beyond 2020; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Siddiqui, S.; Zerhusen, B.; Zehetmeier, M.; Effenberger, M. Distribution of specific greenhouse gas emissions from combined heat-and-power production in agricultural biogas plants. Biomass Bioenergy 2020, 133, 105443. [Google Scholar] [CrossRef]
- Garcia, N.H.; Mattioli, A.; Gil, A.; Frison, N.; Battista, F.; Bolzonella, D. Evaluation of the methane potential of different agricultural and food processing substrates for improved biogas production in rural areas. Renew. Sustain. Energy Rev. 2019, 112, 1–10. [Google Scholar] [CrossRef]
- Götz, M.; Lefebvre, J.; Mörs, F.; McDaniel Koch, A.; Graf, F.; Bajohr, S.; Reimert, R.; Kolb, T. Renewable Power-to-Gas: A technological and economic review. Renew. Energy 2016, 85, 1371–1390. [Google Scholar] [CrossRef] [Green Version]
- Bailera, M.; Lisbona, P.; Romeo, L.M.; Espatolero, S. Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2. Renew. Sustain. Energy Rev. 2017, 69, 292–312. [Google Scholar] [CrossRef]
- Martin, M.R.; Fornero, J.J.; Stark, R.; Mets, L.; Angenent, L.T. A single-culture bioprocess of methanothermobacter thermautotrophicus to upgrade digester biogas by CO2-to-CH4 conversion with H2. Archaea 2013, 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonis, B.; Newborough, M. Sizing and operating power-to-gas systems to absorb excess renewable electricity. Int. J. Hydrogen Energy 2017, 42, 21635–21647. [Google Scholar] [CrossRef]
- Ghaib, K.; Ben-Fares, F.Z. Power-to-Methane: A state-of-the-art review. Renew. Sustain. Energy Rev. 2018, 81, 433–446. [Google Scholar] [CrossRef]
- Csedő, Z.; Zavarkó, M. The role of inter-organizational innovation networks as change drivers in commercialization of disruptive technologies: The case of power-to-gas. Int. J. Sustain. Energy Plan. Manag. 2020, 28, 53–70. [Google Scholar] [CrossRef]
- Natural Gas Transmission—Our Businesses—MOLGroup. Available online: https://molgroup.info/en/our-business/natural-gas-transmission/natural-gas-transmission-1 (accessed on 23 October 2020).
- Hungarian Government. National Energy Strategy 2030; Hungarian Government: Budapest, Hungary, 2012.
- Elia Group Solar-PV Power Generation Data. 2020. Available online: https://www.elia.be/en/grid-data/power-generation/solar-pv-power-generation-data (accessed on 11 September 2020).
- Hungarian Transmission System Operator—MAVIR ZRt. PV Power Generation, Estimation and Fact Data. 2020. Available online: http://mavir.hu/web/mavir/naptermeles-becsles-es-teny-adatok (accessed on 11 September 2020).
- European Network of Transmission System Operators for Electricity (ENTSO-E). ENTSO-E Transparency Platform. Available online: https://transparency.entsoe.eu/dashboard/show (accessed on 11 September 2020).
- Hungarian Transmission System Operator—MAVIR ZRt. Transparency. Available online: https://www.mavir.hu/web/mavir/eromuvi-termeles-forrasok-megoszlasa-szerint-netto-elszamolasi-meresek-alapjan1 (accessed on 11 September 2020).
- EUR-Lex—32019R0943-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R0943 (accessed on 23 October 2020).
- National Legislation Database, H. 389/2007; (XII. 23.) Government Regulation. Available online: http://njt.hu/cgi_bin/njt_doc.cgi?docid=112846.354226 (accessed on 18 October 2019).
- Zsiborács, H.; Hegedűsné Baranyai, N.; Zentkó, L.; Mórocz, A.; Pócs, I.; Máté, K. Electricity Market Challenges of Photovoltaic and Energy Storage Technologies in the European Union: Regulatory Challenges and Responses. Appl. Sci. 2020, 10, 1472. [Google Scholar] [CrossRef] [Green Version]
- Csedő, Z.; Sinóros-Szabó, B.; Zavarkó, M. Seasonal Energy Storage Potential Assessment of WWTPs with Power-to-Methane Technology. Energies 2020, 13, 4973. [Google Scholar] [CrossRef]
Country | Availability of PV Forecast | Data Resolution (min) |
---|---|---|
Czech Republic | Intraday PV forecast data are available | 60 |
Hungary | 15 | |
Poland | 15 | |
Slovakia | 60 |
Country | Size of the Monitored PV Capacity (MWp) | |
---|---|---|
1 September 2019 | 31 August 2020 | |
Czech Republic | 2054 | 2061 |
Hungary | 1013 | 1129 |
Poland | NDA | 1928 |
Slovakia | 409 | 450 |
Characteristics | Dimension | Value |
---|---|---|
Monitored PV in Hungary | MWp | 1129 |
Surplus energy (rest from the regulation) | MWh/100 MWp | 3600 |
Total surplus energy in Hungary for 1129 MWp monitored PV system | MWh | 40,644 |
Produced biomethane | MJ | 79,256 |
Produced biomethane | Nm3 | 2,085,679 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pintér, G. The Potential Role of Power-to-Gas Technology Connected to Photovoltaic Power Plants in the Visegrad Countries—A Case Study. Energies 2020, 13, 6408. https://doi.org/10.3390/en13236408
Pintér G. The Potential Role of Power-to-Gas Technology Connected to Photovoltaic Power Plants in the Visegrad Countries—A Case Study. Energies. 2020; 13(23):6408. https://doi.org/10.3390/en13236408
Chicago/Turabian StylePintér, Gábor. 2020. "The Potential Role of Power-to-Gas Technology Connected to Photovoltaic Power Plants in the Visegrad Countries—A Case Study" Energies 13, no. 23: 6408. https://doi.org/10.3390/en13236408
APA StylePintér, G. (2020). The Potential Role of Power-to-Gas Technology Connected to Photovoltaic Power Plants in the Visegrad Countries—A Case Study. Energies, 13(23), 6408. https://doi.org/10.3390/en13236408