What Makes Decentralised Energy Storage Schemes Successful? An Assessment Incorporating Stakeholder Perspectives
Abstract
:1. Introduction
1.1. DES Technologies and Urban Energy Systems
1.2. Rationale and Objective of the Research
2. Methodology
2.1. Background Material and Participants
2.2. Decision Workshop Method
2.3. Description of the Workshop Sessions
2.3.1. Technical and Economic Aspects
Organisational Motivations, Pros and Cons
Tariff Options for Solar PV and Storage
2.3.2. Business Models
2.3.3. Public Perceptions and Acceptance
3. Results
3.1. Technical and Economic Aspects
3.1.1. Organisational Motivations
3.1.2. Benefits and Drawbacks
3.1.3. Net Demands of Houses with Solar PV
3.1.4. Tariff Options for Solar PV and Storage
3.2. Business Models
3.3. Public Acceptance
3.3.1. General Factors Affecting Acceptance
3.3.2. Discussing Trust, Fairness and Expectations
4. Discussion
4.1. Choosing a DES Scheme: Why, What and Where?
4.2. The Value of DES: Who, How and When?
4.3. Lessons for the Future Implementation of DES
- The need for simplicity and clarity
- Managing expectations, uncertainty and risk
- Generating benefits for the community
- The involvement of trusted actors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Energy Agency. IEA Cities Lead the Way on Clean and Decentralized Energy Solutions; International Energy Agency: Paris, France, 2017. [Google Scholar]
- C40. Energy and Buildings Initiative: Clean Energy. Available online: https://www.c40.org/networks/clean-energy (accessed on 15 June 2020).
- UK100. The UK100 Pledge. Available online: http://www.uk100.org/the-uk100-pledge (accessed on 25 July 2020).
- Declare a Climate Emergency List of Councils Who Have Declared a Climate Emergency. Available online: https://www.climateemergency.uk/blog/list-of-councils/ (accessed on 19 June 2020).
- Hay, R.; Macwhinnie, N. Making the Electricity System More Flexible and Delivering the Benefits for Consumers; OFGEM: London, UK, 2015. [Google Scholar]
- Pimm, A.J.; Cockerill, T.T.; Taylor, P.G. The potential for peak shaving on low voltage distribution networks using electricity storage. J. Energy Storage 2018, 16, 231–242. [Google Scholar] [CrossRef]
- Pimm, A.J.; Cockerill, T.T.; Taylor, P.G.; Bastiaans, J. The value of electricity storage to large enterprises: A case study on Lancaster University. Energy 2017, 128, 378–393. [Google Scholar] [CrossRef]
- Wade, N.S.; Taylor, P.C.; Lang, P.D.; Jones, P.R. Evaluating the benefits of an electrical energy storage system in a future smart grid. Energy Policy 2010, 38, 7180–7188. [Google Scholar] [CrossRef] [Green Version]
- Farrag, M.E.A.; Hepburn, D.M.; Garcia, B. Quantification of efficiency improvements from integration of battery energy storage systems and renewable energy sources into domestic distribution networks. Energies 2019, 12, 4640. [Google Scholar] [CrossRef] [Green Version]
- Hall, S.; Roelich, K. Local Electricity Supply: Opportunities, Archetypes and Outcomes; Ibuild/RTP Independent Report; University of Leeds: Leeds, UK, 2015. [Google Scholar]
- Roelich, K.; Bale, C.S.E.; Turner, B.; Neall, R. Institutional pathways to municipal energy companies in the UK: Realising co-benefits to mitigate climate change in cities. J. Clean. Prod. 2018, 182, 727–736. [Google Scholar] [CrossRef] [Green Version]
- Tingey, M.; Webb, J.; Hawkey, D. Local Authority Engagement in UK Energy Systems: Highlights from Early Findings; UKERC: London, UK; The ETI: Loughborough, UK, 2017. [Google Scholar]
- Taylor, P.G.; Bolton, R.; Stone, D.; Upham, P. Developing pathways for energy storage in the UK using a coevolutionary framework. Energy Policy 2013, 63, 230–243. [Google Scholar] [CrossRef] [Green Version]
- Murrant, D.; Radcliffe, J. Assessing energy storage technology options using a multi-criteria decision analysis-based framework. Appl. Energy 2018, 231, 788–802. [Google Scholar] [CrossRef] [Green Version]
- Tingey, M.; Webb, J. Governance institutions and prospects for local energy innovation: Laggards and leaders among UK local authorities. Energy Policy 2020, 138, 111211. [Google Scholar] [CrossRef]
- Koohi-Fayegh, S.; Rosen, M.A. Optimization of seasonal storage for community-level energy systems: Status and needs. Energyecol. Environ. 2017, 2, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Ambrosio-Albala, P.; Upham, P.; Bale, C.S.E.; Taylor, P.G. Exploring acceptance of decentralised energy storage at household and neighbourhood scales: A UK survey. Energy Policy 2019, 138, 111194. [Google Scholar] [CrossRef]
- TechNavio Global Decentralized Energy Storage Market 2019–2023. ID: 4774783. TechNavio2019, 122.
- Geels, F.W.; Sovacool, B.K.; Schwanen, T.; Sorrell, S. Sociotechnical transitions for deep decarbonization. Science 2017, 357, 1242. [Google Scholar] [CrossRef] [PubMed]
- Pimm, A.J.; Cockerill, T.T.; Taylor, P.G. Time-of-use and time-of-export tariffs for home batteries: Effects on low voltage distribution networks. J. Energy Storage 2018, 18, 447–458. [Google Scholar] [CrossRef]
- Pimm, A.J.; Palczewski, J.; Morris, R.; Cockerill, T.T.; Taylor, P.G. Community energy storage: A case study in the UK using a linear programming method. Energy Convers. Manag. 2020, 205, 112388. [Google Scholar] [CrossRef]
- De Oliveira e Silva, G.; Hendrick, P. Photovoltaic self-sufficiency of Belgian households using lithium-ion batteries, and its impact on the grid. Appl. Energy 2017, 195, 786–799. [Google Scholar] [CrossRef]
- Martins, A.A.; Mota, M.G.; Caetano, N.S.; Mata, T.M. Decentralized electricity storage evaluation in the Portuguese context. Electr. J. 2020, 33, 106822. [Google Scholar] [CrossRef]
- Burlinson, A.; Giulietti, M. Non-traditional business models for city-scale energy storage: Evidence from UK case studies. Econ. E Politica Ind. 2018, 45, 215–242. [Google Scholar] [CrossRef] [Green Version]
- Brown, D. Batteries, Export and Energy Security: The Deployment of 12GW of Battery Storage by the End of 2021 is Achievable and Can. Support. Post-Brexit Growth; Renewable Energy Association (REA): London, UK, 2017. [Google Scholar]
- Lombardi, P.; Schwabe, F. Sharing economy as a new business model for energy storage systems. Appl. Energy 2017, 188, 485–496. [Google Scholar] [CrossRef]
- Müller, S.C.; Welpe, I.M. Sharing electricity storage at the community level: An empirical analysis of potential business models and barriers. Energy Policy 2018, 118, 492–503. [Google Scholar] [CrossRef]
- Devine-Wright, P.; Batel, S.; Aas, O.; Sovacool, B.; Labelle, M.C.; Ruud, A. A conceptual framework for understanding the social acceptance of energy infrastructure: Insights from energy storage. Energy Policy 2017, 107, 27–31. [Google Scholar] [CrossRef]
- Ambrosio-Albalá, P.; Upham, P.; Bale, C.S.E. Purely ornamental? Public perceptions of distributed energy storage in the United Kingdom. Energy Res. Soc. Sci. 2019, 48, 139–150. [Google Scholar] [CrossRef]
- Thomas, G.; Demski, C.; Pidgeon, N. Deliberating the social acceptability of energy storage in the UK. Energy Policy 2019, 133, 110908. [Google Scholar] [CrossRef]
- Acar, C.; Beskese, A.; Temur, G.T. A novel multicriteria sustainability investigation of energy storage systems. Int. J. Energy Res. 2019, 43, 6419–6441. [Google Scholar] [CrossRef]
- Walsh, C.L.; Glendinning, S.; Dawson, R.J.; England, K.; Martin, M.; Watkins, C.L.; Wilson, R.; McLoughlin, A.; Glenis, V.; Parker, D. Collaborative platform to facilitate engineering decision-making. Proc. Inst. Civ. Eng. Eng. Sustain. 2013, 166, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Arizona State University Decision Theather. Available online: https://dt.asu.edu/home (accessed on 20 December 2019).
- Denzin, N.K.; Licoln, Y.S. The SAGE Handbook of Qualitative Research; SAGE Publishing Inc.: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Boukherroub, T.; D’Amours, S.; Rönnqvist, M. Sustainable forest management using decision theaters: Rethinking participatory planning. J. Clean. Prod. 2018, 179, 567–580. [Google Scholar] [CrossRef]
- Boukherroub, T.; D’Amours, S.; Rönnqvist, M. Decision theaters: A creative approach for participatory planning in the forest sector. In Proceedings of the 6th International Conference on Information Systems, Logistics and Supply Chain (ILS’2016), Bordeaux, France, 1–4 June 2016. [Google Scholar]
- Burgess, J.; Stirling, A.; Clark, J.; Davies, G.; Eames, M.; Staley, K.; Williamson, S. Deliberative mapping: A novel analytic-deliberative methodology to support contested science-policy decisions. Public Underst. Sci. 2007, 16, 299–322. [Google Scholar] [CrossRef]
- Bellamy, R.; Lezaun, J.; Palmer, J. Public perceptions of geoengineering research governance: An experimental deliberative approach. Glob. Environ. Chang. 2017, 45, 194–202. [Google Scholar] [CrossRef]
- Rehr, A.P.; Small, M.J.; Bradley, P.; Fisher, W.S.; Vega, A.; Black, K.; Stockton, T. A Decision Support Framework for Science-Based, Multi-Stakeholder Deliberation: A Coral Reef Example. Environ. Manag. 2012, 50, 1204–1218. [Google Scholar] [CrossRef]
- Corner, A.; Parkhill, K.; Pidgeon, N.; Vaughan, N.E. Messing with nature? Exploring public perceptions of geoengineering in the UK. Glob. Environ. Chang. 2013, 23, 938–947. [Google Scholar] [CrossRef] [Green Version]
- EC. Mapping and Analyses of the Current and Future (2020–2030) Heating/Cooling Fuel Deployment (Fossil/Renewables); European Commission; Directorate-General for Energy Directorate C. 2—New Energy Technologies, Innovation and Clean Coal: Brussels, Belgium, 2016. [Google Scholar]
- Upham, P.; Roberts, T. Public perceptions of CCS in context: Results of NearCO2 focus groups in the UK, Belgium, the Netherlands, Germany, Spain and Poland. Energy Procedia 2011, 4, 6338–6344. [Google Scholar] [CrossRef]
- National Grid ESO Demand Turn, Up. Available online: https://www.nationalgrideso.com/balancing-services/reserve-services/demand-turn (accessed on 10 January 2020).
- Sovacool, B.K.; Martiskainen, M.; Hook, A.; Baker, L. Decarbonization and its discontents: A critical energy justice perspective on four low-carbon transitions. Clim. Chang. 2019, 155, 581–619. [Google Scholar] [CrossRef] [Green Version]
- BEIS; OFGEM. Upgrading Our Energy System: Smart Systems and Flexibility Plan; Department for Business, Energy, and Industrial Strategy: London, UK, 2017. [Google Scholar]
- HMG. The Climate Change Act 2008, The Climate Change Act 2008 (2050 Target Amendment) Order 2019; Department for Business, Energy, and Industrial Strategy: London, UK, 2019; Volume 2019, p. 1056. [Google Scholar]
- Grimwood, G.G.; Ares, E. Energy Storage in the UK; 07621; House of Commons: London, UK, 21 July 2016. [Google Scholar]
- Roberts, M.B.; Bruce, A.; MacGill, I. Impact of shared battery energy storage systems on photovoltaic self-consumption and electricity bills in apartment buildings. Appl. Energy 2019, 245, 78–95. [Google Scholar] [CrossRef]
- Dong, S.; Kremers, E.; Brucoli, M.; Rothman, R.; Brown, S. Techno-enviro-economic assessment of household and community energy storage in the UK. Energy Convers. Manag. 2020, 205, 112330. [Google Scholar] [CrossRef]
- Sidhu, A.S.; Pollitt, M.G.; Anaya, K.L. A social cost benefit analysis of grid-scale electrical energy storage projects: A case study. Appl. Energy 2018, 212, 881–894. [Google Scholar] [CrossRef]
- Pudjianto, D.; Aunedi, M.; Djapic, P.; Strbac, G. Whole-Systems Assessment of the Value of Energy Storage in Low-Carbon Electricity Systems. Ieee Trans. Smart Grid 2014, 5, 1098–1109. [Google Scholar] [CrossRef]
- Bale, C.; Ambrosio-Albala, P.; Burlinson, A.; Guilietti, M.; Murran, D.; Radcliffe, J.; Upham, P.; Taylor, P.G. The role of consumers in the uptake of decentralised energy storage technologies. In 2018 BIEE Research Conference “Consumers at the Heart of the Energy System”? British Institute of Energy Economics: Oxford, UK, 2018. [Google Scholar]
- Jones, F.; Barnes, Z.; Joe, P.; Wayne, J.; Zafar, J.; Zhou, J.; Ashley, R. Craking the Code—A Guide to Energy Storage Revenue Streams and How to Derisk Them; Everoze Partners Limited: Scottish Renewables: Bristol, UK, 2016; Volume SR001-S-001-I, pp. 1–39. [Google Scholar]
- Koirala, B.P.; van Oost, E.; van der Windt, H. Community energy storage: A responsible innovation towards a sustainable energy system? Appl. Energy 2018, 231, 570–585. [Google Scholar] [CrossRef]
- Gaede, J.; Rowlands, I.H. How ‘transformative’ is energy storage? Insights from stakeholder perceptions in Ontario. Energy Res. Soc. Sci. 2018, 44, 268–277. [Google Scholar] [CrossRef]
- Schmidt, O.; Melchior, S.; Hawkes, A.; Staffell, I. Projecting the Future Levelized Cost of Electricity Storage Technologies. Joule 2019, 3, 81–100. [Google Scholar] [CrossRef] [Green Version]
- Castagneto Gissey, G.; Dodds, P.E.; Radcliffe, J. Market and regulatory barriers to electrical energy storage innovation. Renew. Sustain. Energy Rev. 2018, 82, 781–790. [Google Scholar] [CrossRef]
- Solar photovoltaics deployment in the UK May 2020. In 5 years; Statistic, N. (Ed.) Department for Business, Energy & Industrial Strategy: London, UK, 2020. [Google Scholar]
- Bistline, J.E.T.; Young, D.T. Emissions impacts of future battery storage deployment on regional power systems. Appl. Energy 2020, 264, 114678. [Google Scholar] [CrossRef]
- Fraunhofer Institute for Systems and Innovation Research; Fraunhofer Institute for Solar Energy Systems; Institute for Resource Efficiency and Energy Strategies GmbH; Observ’ER; Technical University Vienna—Energy Economics Group; TEP Energy GmbH. Mapping and analyses of the current and future (2020–2030) heating/cooling fuel deployment (fossil/renewables), February 2017.
- Li, X.; Chalvatzis, K.J.; Stephanides, P.; Papapostolou, C.; Kondyli, E.; Kaldellis, K.; Zafirakis, D. Bringing innovation to market: Business models for battery storage. Energy Procedia 2019, 159, 327–332. [Google Scholar] [CrossRef]
- Bolton, R.; Foxon, T.J.; Hall, S. Energy transitions and uncertainty: Creating low carbon investment opportunities in the UK electricity sector. Environ. Plann. C Gov. Policy 2016, 34, 1387–1403. [Google Scholar] [CrossRef] [Green Version]
- Sollie, P. On Uncertainty in Ethics and Technology. In Evaluating New Technologies: Methodological Problems for the Ethical Assessment of Technology Developments; Sollie, P., Düwell, M., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 141–158. [Google Scholar]
- Boomsma, T.K.; Meade, N.; Fleten, S.E. Renewable energy investments under different support schemes: A real options approach. Eur. J. Oper. Res. 2012, 220, 225–237. [Google Scholar] [CrossRef]
- Brown, N.; Michael, M. A Sociology of Expectations: Retrospecting Prospects and Prospecting Retrospects. Technol. Anal. Strat. Manag. 2003, 15, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Alkemade, F.; Suurs, R.A.A. Patterns of expectations for emerging sustainable technologies. Technol. Soc. Chang. 2012, 79, 448–456. [Google Scholar] [CrossRef] [Green Version]
- Borup, M.; Brown, N.; Konrad, K.; Van Lente, H. The sociology of expectations in science and technology. Technol. Anal. Strat. Manag. 2006, 18, 285–298. [Google Scholar] [CrossRef]
- van Lente, H.; Bakker, S. Competing expectations: The case of hydrogen storage technologies. Technol. Anal. Strat. Manag. 2010, 22, 693–709. [Google Scholar] [CrossRef]
- Konrad, K. The social dynamics of expectations: The interaction of collective and actor-specific expectations on electronic commerce and interactive television. Technol. Anal. Strat. Manag. 2006, 18, 429–444. [Google Scholar] [CrossRef]
- Froot, K.A.; Scharfstein, D.S.; Stein, J.C. Herd on the Street: Informational Inefficiencies in a Market with Short-Term Speculation. J. Financ. 1992, 47, 1461–1484. [Google Scholar] [CrossRef]
- Sendstad, L.H.; Chronopoulos, M. Sequential investment in renewable energy technologies under policy uncertainty. Energy Policy 2020, 137, 111152. [Google Scholar] [CrossRef]
- Bouzarovski, S.; Petrova, S. A global perspective on domestic energy deprivation: Overcoming the energy poverty–fuel poverty binary. Energy Res. Soc. Sci. 2015, 10, 31–40. [Google Scholar] [CrossRef]
- Preston, J.; Rajé, F. Accessibility, mobility and transport-related social exclusion. J. Transp. Geogr. 2007, 15, 151–160. [Google Scholar] [CrossRef]
- Tackling Energy Poverty. One Earth 2019, 1, 385–387. [CrossRef]
Value Proposition | Revenue Streams | Cost Streams | Organisations |
---|---|---|---|
Social housing: reduction in energy bills, people in fuel poverty |
|
|
|
Community/ neighbourhood scheme: generation and community storage, with a specific tariff for the model |
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambrosio-Albalá, P.; Bale, C.S.E.; Pimm, A.J.; Taylor, P.G. What Makes Decentralised Energy Storage Schemes Successful? An Assessment Incorporating Stakeholder Perspectives. Energies 2020, 13, 6490. https://doi.org/10.3390/en13246490
Ambrosio-Albalá P, Bale CSE, Pimm AJ, Taylor PG. What Makes Decentralised Energy Storage Schemes Successful? An Assessment Incorporating Stakeholder Perspectives. Energies. 2020; 13(24):6490. https://doi.org/10.3390/en13246490
Chicago/Turabian StyleAmbrosio-Albalá, Pepa, Catherine S. E. Bale, Andrew J. Pimm, and Peter G. Taylor. 2020. "What Makes Decentralised Energy Storage Schemes Successful? An Assessment Incorporating Stakeholder Perspectives" Energies 13, no. 24: 6490. https://doi.org/10.3390/en13246490
APA StyleAmbrosio-Albalá, P., Bale, C. S. E., Pimm, A. J., & Taylor, P. G. (2020). What Makes Decentralised Energy Storage Schemes Successful? An Assessment Incorporating Stakeholder Perspectives. Energies, 13(24), 6490. https://doi.org/10.3390/en13246490