Thermal Performance and Numerical Simulation of the 1-Pyrene Carboxylic-Acid Functionalized Graphene Nanofluids in a Sintered Wick Heat Pipe
Abstract
:1. Introduction
2. Defining the Configuration and Nanofluid
2.1. Experimental Procedure
2.1.1. Nanofluid Preparation and Stability
2.1.2. Data Processing
2.2. Numerical Analysis
2.2.1. Physical Model Description and Boundary Conditions
2.2.2. Assumptions and Governing Equations
- Vapor and liquid flows are turbulent and incompressible.
- The volume is an average of density of the liquid in the wick is reformed to preserve liquid mass and to contain the variations in vapor and liquid mass correctly through the transient operational conditions [41].
- The vapor is saturated at t = 0 (time).
- Thermophysical properties are supposed constant excluding the vapor density, which is calculated from the working pressure.
2.2.3. Mesh Independency
2.2.4. Uncertainty Analysis
2.2.5. Validation
- The water flowing in the cooling jacket.
- The non-uniformity in the wick thickness.
3. Results and Discussion
3.1. Thermal Studies
3.2. Efficiency
3.3. Temperature Distribution of Simulation
3.4. Flow Visualization of CFD Simulation Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pawar, V.R.; Sobhansarbandi, S. CFD modeling of a thermal energy storage based heat pipe evacuated tube solar collector. J. Energy Storage 2020, 30, 101528. [Google Scholar] [CrossRef]
- Mofijur, M.; Mahlia, T.M.I.; Silitonga, A.S.; Ong, H.C.; Silakhori, M.; Hasan, M.H.; Putra, N.; Rahman, S.M.A. Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview. Energies 2019, 12, 3167. [Google Scholar] [CrossRef] [Green Version]
- Naghavi, M.S.; Ong, K.S.; Badruddin, I.A.; Mehrali, M.; Silakhori, M.; Metselaar, H.S.C. Theoretical model of an evacuated tube heat pipe solar collector integrated with phase change material. Energy 2015, 91, 911–924. [Google Scholar] [CrossRef]
- Sarafraz, M.; Tlili, I.; Tian, Z.; Bakouri, M.; Safaei, M.R. Smart optimization of a thermosyphon heat pipe for an evacuated tube solar collector using response surface methodology (RSM). Phys. A Stat. Mech. Its Appl. 2019, 534, 122146. [Google Scholar] [CrossRef]
- Sundar, L.S.; Sharma, K.; Singh, M.K.; Sousa, A. Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor–A review. Renew. Sustain. Energy Rev. 2017, 68, 185–198. [Google Scholar] [CrossRef]
- Faghri, A. Review and advances in heat pipe science and technology. J. Heat Transf. 2012, 134, 123001. [Google Scholar] [CrossRef]
- Maydanik, Y.; Vershinin, S.; Chernysheva, M. Investigation of thermal characteristics of a loop heat pipe in a wide range of external conditions. Int. J. Heat Mass Transf. 2020, 147, 118967. [Google Scholar] [CrossRef]
- Reay, D.; McGlen, R.; Kew, P. Heat Pipes: Theory, Design and Applications; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar]
- Rostami, S.; Toghraie, D.; Shabani, B.; Sina, N.; Barnoon, P. Measurement of the thermal conductivity of MWCNT-CuO/water hybrid nanofluid using artificial neural networks (ANNs). J. Therm. Anal. Calorim. 2020, 1–9. [Google Scholar] [CrossRef]
- Silakhori, M.; Metselaar, H.; Mahlia, T.; Fauzi, H. Preparation and characterisation of microencapsulated paraffin wax with polyaniline-based polymer shells for thermal energy storage. Mater. Res. Innov. 2014, 18 (Suppl. 6), 480–484. [Google Scholar] [CrossRef]
- Silakhori, M.; Jafarian, M.; Arjomandi, M.; Nathan, G.J. Comparing the thermodynamic potential of alternative liquid metal oxides for the storage of solar thermal energy. Sol. Energy 2017, 157, 251–258. [Google Scholar] [CrossRef]
- Jouhara, H.; Meskimmon, R. Experimental investigation of wraparound loop heat pipe heat exchanger used in energy efficient air handling units. Energy 2010, 35, 4592–4599. [Google Scholar] [CrossRef]
- Weng, Y.-C.; Cho, H.-P.; Chang, C.-C.; Chen, S.-L. Heat pipe with PCM for electronic cooling. Appl. Energy 2011, 88, 1825–1833. [Google Scholar] [CrossRef]
- Wong, S.-C.; Tseng, H.-H.; Chen, S.-H. Visualization experiments on the condensation process in heat pipe wicks. Int. J. Heat Mass Transf. 2014, 68, 625–632. [Google Scholar] [CrossRef]
- Sureshkumar, R.; Mohideen, S.T.; Nethaji, N. Heat transfer characteristics of nanofluids in heat pipes: A review. Renew. Sustain. Energy Rev. 2013, 20, 397–410. [Google Scholar] [CrossRef]
- Cacua, K.; Buitrago-Sierra, R.; Herrera, B.; Pabón, E.; Murshed, S.S. Nanofluids’ stability effects on the thermal performance of heat pipes. J. Therm. Anal. Calorim. 2019, 136, 1597–1614. [Google Scholar] [CrossRef]
- Gupta, N.K.; Tiwari, A.K.; Ghosh, S.K. Heat transfer mechanisms in heat pipes using nanofluids—A review. Exp. Therm. Fluid Sci. 2018, 90, 84–100. [Google Scholar] [CrossRef]
- Li, Z.; Sarafraz, M.; Mazinani, A.; Moria, H.; Tlili, I.; Alkanhal, T.A.; Goodarzi, M.; Safaei, M.R. Operation analysis, response and performance evaluation of a pulsating heat pipe for low temperature heat recovery. Energy Convers. Manag. 2020, 222, 113230. [Google Scholar] [CrossRef]
- Goshayeshi, H.R.; Goodarzi, M.; Safaei, M.R.; Dahari, M. Experimental study on the effect of inclination angle on heat transfer enhancement of a ferrofluid in a closed loop oscillating heat pipe under magnetic field. Exp. Therm. Fluid Sci. 2016, 74, 265–270. [Google Scholar] [CrossRef]
- Kim, K.M.; Jeong, Y.S.; Kim, I.G.; Bang, I.C. Comparison of thermal performances of water-filled, SiC nanofluid-filled and SiC nanoparticles-coated heat pipes. Int. J. Heat Mass Transf. 2015, 88, 862–871. [Google Scholar] [CrossRef]
- Mehrali, M.; Sadeghinezhad, E.; Latibari, S.T.; Kazi, S.N.; Mehrali, M.; Zubir, M.N.B.M.; Metselaar, H.S.C. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res. Lett. 2014, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Goodarzi, M.; Rashidi, M.M.; Basiriparsa, A. Analytical and numerical solutions of vapor flow in a flat plate heat pipe. Walailak J. Sci. Technol. (WJST) 2012, 9, 65–81. [Google Scholar]
- Ghanbarpour, M.; Nikkam, N.; Khodabandeh, R.; Toprak, M.S.; Muhammed, M. Thermal performance of screen mesh heat pipe with Al2O3 nanofluid. Exp. Therm. Fluid Sci. 2015, 66, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Naphon, P.; Assadamongkol, P.; Borirak, T. Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency. Int. Commun. In Heat Mass Transf. 2008, 35, 1316–1319. [Google Scholar] [CrossRef]
- Goshayeshi, H.R.; Safaei, M.R.; Goodarzi, M.; Dahari, M. Particle size and type effects on heat transfer enhancement of Ferro-nanofluids in a pulsating heat pipe. Powder Technol. 2016, 301, 1218–1226. [Google Scholar] [CrossRef]
- Iranmanesh, S.; Mehrali, M.; Sadeghinezhad, E.; Ang, B.C.; Ong, H.C.; Esmaeilzadeh, A. Evaluation of viscosity and thermal conductivity of graphene nanoplatelets nanofluids through a combined experimental–statistical approach using respond surface methodology method. Int. Commun. Heat Mass Transf. 2016, 79, 74–80. [Google Scholar] [CrossRef]
- Legierski, J.; Wie, B.; De Mey, G. Measurements and simulations of transient characteristics of heat pipes. Microelectron. Reliab. 2006, 46, 109–115. [Google Scholar] [CrossRef]
- Zhang, M.; Lai, Y.; Zhang, J.; Sun, Z. Numerical study on cooling characteristics of two-phase closed thermosyphon embankment in permafrost regions. Cold Reg. Sci. Technol. 2011, 65, 203–210. [Google Scholar] [CrossRef]
- Joudi, K.A.; Al-Tabbakh, A.A. Computer simulation of a two phase thermosyphon solar domestic hot water heating system. Energy Convers. Manag. 1999, 40, 775–793. [Google Scholar] [CrossRef]
- Annamalai, S.A.; Ramalingam, V. Experimental investigation and CFD analysis of a air cooled condenser heat pipe. Therm. Sci. 2011, 15, 759–772. [Google Scholar] [CrossRef]
- De Schepper, S.C.; Heynderickx, G.J.; Marin, G.B. Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker. Comput. Chem. Eng. 2009, 33, 122–132. [Google Scholar] [CrossRef]
- Zhang, N. Innovative heat pipe systems using a new working fluid. Int. Commun. In Heat Mass Transf. 2001, 28, 1025–1033. [Google Scholar] [CrossRef]
- Sarafraz, M.M.; Tlili, I.; Tian, Z.; Bakouri, M.; Safaei, M.R.; Goodarzi, M. Thermal evaluation of graphene nanoplatelets nanofluid in a fast-responding HP with the potential use in solar systems in smart cities. Appl. Sci. 2019, 9, 2101. [Google Scholar] [CrossRef] [Green Version]
- Li, L.L.; Liu, K.P.; Yang, G.H.; Wang, C.M.; Zhang, J.R.; Zhu, J.J. Fabrication of graphene—Quantum dots composites for sensitive electrogenerated chemiluminescence immunosensing. Adv. Funct. Mater. 2011, 21, 869–878. [Google Scholar] [CrossRef]
- Soleymaniha, M.; Amiri, A.; Shanbedi, M.; Chew, B.T.; Wongwises, S. Water-based graphene quantum dots dispersion as a high-performance long-term stable nanofluid for two-phased closed thermosyphons. Int. Commun. Heat Mass Transf. 2018, 95, 147–154. [Google Scholar] [CrossRef]
- Ghosh, S.; An, X.; Shah, R.; Rawat, D.; Dave, B.; Kar, S.; Talapatra, S. Effect of 1-pyrene carboxylic-acid functionalization of graphene on its capacitive energy storage. J. Phys. Chem. C 2012, 116, 20688–20693. [Google Scholar] [CrossRef]
- Simmons, T.J.; Bult, J.; Hashim, D.P.; Linhardt, R.J.; Ajayan, P.M. Noncovalent functionalization as an alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites. Acs Nano 2009, 3, 865–870. [Google Scholar] [CrossRef]
- Churchill, S.; Bernstein, M. A correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow. J. Heat Transf. 1977, 99, 300–306. [Google Scholar] [CrossRef]
- Nemec, P. Gravity in heat pipe Technology. In Gravity-Geoscience Applications, Industrial Technology and Quantum Aspect; InTech: Rijeka, Croatia, 2017; p. 7. [Google Scholar]
- Fadhl, B.; Wrobel, L.C.; Jouhara, H. CFD modelling of a two-phase closed thermosyphon charged with R134a and R404a. Appl. Therm. Eng. 2015, 78, 482–490. [Google Scholar] [CrossRef] [Green Version]
- Solomon, A.B.; Ramachandran, K.; Asirvatham, L.G.; Pillai, B. Numerical analysis of a screen mesh wick heat pipe with Cu/water nanofluid. Int. J. Heat Mass Transf. 2014, 75, 523–533. [Google Scholar] [CrossRef]
- FLUENT, ANSYS. User Guide (Release 13.0). Modelling Multiphase Flows; ANSYS Inc.: Canonsburg, PA, USA, 2010; pp. e1143–e1144. [Google Scholar]
- Taylor, J. Introduction to Error Analysis, the Study of Uncertainties in Physical Measurements; University Science Books: New York, NY, USA, 1997. [Google Scholar]
- Fadhl, B.; Wrobel, L.C.; Jouhara, H. Numerical modelling of the temperature distribution in a two-phase closed thermosyphon. Appl. Therm. Eng. 2013, 60, 122–131. [Google Scholar] [CrossRef] [Green Version]
Parameters | Error (%) |
---|---|
Temperature | 0.2 |
Length of the heated section | 2.3 |
The diameter of the heat pipe | 2 |
Heat input | 3.3 |
Heat flux | 3.2 |
Thermal resistance | 4.1 |
Heat transfer coefficient | 3.5 |
Copper wall/wick | Thermal conductivity | 387.6 W/m K |
Specific heat | 381 J/kg K | |
Density | 8978 kg/m3 | |
Thermal conductivity of the wick | 40 W/m K | |
Water | Thermal conductivity | 0.6 W/m K |
Specific heat | 4182 J/kg K | |
Density | 1000 kg/m3 | |
Viscosity | 1.05 mPas | |
Water vapor | Thermal conductivity | 0.026 W/m K |
Specific heat | 2014 J/kg K | |
Density | 0.01 kg/m3 | |
Viscosity | 0.00849 mPas | |
Water/vapor | Latent heat of vaporization | 2446.36 kJ/kg |
PCA-functionalized graphene nanofluid with 0.06 wt% | Viscosity | 1.23 mPas |
Density | 1025 kg/m3 | |
Specific heat | 4210 J/kg K | |
Thermal conductivity | 0.79 W/m K |
Number of Elements | Average Temperature on Evaporator Sections (°C) | Maximum Temperature on Evaporator Sections (°C) | Average Temperature on Condenser Sections (°C) | Maximum Temperature on Condenser Sections (°C) |
---|---|---|---|---|
110,991 | 77.1 | 79.3 | 44.8 | 45.9 |
155,910 | 77.9 | 79.7 | 45.7 | 47.1 |
210,510 | 78.9 | 80.3 | 46.8 | 47.8 |
225,229 | 79.7 | 80.1 | 47.2 | 47.6 |
290,519 | 79.8 | 80.1 | 47.3 | 47.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esmaeilzadeh, A.; Silakhori, M.; Nik Ghazali, N.N.; Metselaar, H.S.C.; Bin Mamat, A.; Naghavi Sanjani, M.S.; Iranmanesh, S. Thermal Performance and Numerical Simulation of the 1-Pyrene Carboxylic-Acid Functionalized Graphene Nanofluids in a Sintered Wick Heat Pipe. Energies 2020, 13, 6542. https://doi.org/10.3390/en13246542
Esmaeilzadeh A, Silakhori M, Nik Ghazali NN, Metselaar HSC, Bin Mamat A, Naghavi Sanjani MS, Iranmanesh S. Thermal Performance and Numerical Simulation of the 1-Pyrene Carboxylic-Acid Functionalized Graphene Nanofluids in a Sintered Wick Heat Pipe. Energies. 2020; 13(24):6542. https://doi.org/10.3390/en13246542
Chicago/Turabian StyleEsmaeilzadeh, Alireza, Mahyar Silakhori, Nik Nazri Nik Ghazali, Hendrik Simon Cornelis Metselaar, Azuddin Bin Mamat, Mohammad Sajad Naghavi Sanjani, and Soudeh Iranmanesh. 2020. "Thermal Performance and Numerical Simulation of the 1-Pyrene Carboxylic-Acid Functionalized Graphene Nanofluids in a Sintered Wick Heat Pipe" Energies 13, no. 24: 6542. https://doi.org/10.3390/en13246542
APA StyleEsmaeilzadeh, A., Silakhori, M., Nik Ghazali, N. N., Metselaar, H. S. C., Bin Mamat, A., Naghavi Sanjani, M. S., & Iranmanesh, S. (2020). Thermal Performance and Numerical Simulation of the 1-Pyrene Carboxylic-Acid Functionalized Graphene Nanofluids in a Sintered Wick Heat Pipe. Energies, 13(24), 6542. https://doi.org/10.3390/en13246542