Experimental Study of Heat Transfer on the Internal Surfaces of a Double-Wall Structure with Pin Fin Array
Abstract
:1. Introduction
2. Experiment Setup and Procedures
2.1. Test Rigs
2.2. Test Configurations
2.3. Test Procedure and Data Reduction
2.4. Uncertainty Analysis
3. Results and Discussion
3.1. Two-Dimensional Distributions of Nusselt Numbers
3.2. Spanwise Averaged Nusselt Numbers
3.3. Surface-Averaged Nusselt Numbers
3.4. Heat Transfer Analysis of the Double-Wall Cooling Structure
4. Conclusions
- For the target surface, the high heat transfer area is mainly between the two rows of pin fins next to the impingement holes. The second peak values are found at all Reynolds numbers studied in this paper. With the increase of the Reynolds number, the difference between the Nusselt number at the second peak and the stagnation point decreases. It means a short jet impingement distance can improve the heat transfer rate on the target surface. For the impingement surface, the regions with the highest Nusselt numbers appear at the left and right sides of the pin fins between the two impingement holes. The averaged Nusselt numbers on the target surface are 0–23% larger than those on the impingement surface, with the increase of the Reynolds number from 1 × 104 to 6 × 104.
- The Nusselt numbers on the pin fins are strongly dependent on the various locations. Pin fin C has a much higher surface-averaged Nusselt number than that of pin fin B and pin fin A, which has the smallest value. The correlations for the various pin fins, target surface and impingement surface are developed to guide the heat transfer analysis.
- The heat transfer contributions of the impingement surface, pin fin surface and target surface to the overall cooling are analyzed. The target surface contributed the largest amount of the heat transfer rate, with a value of about 62%. The percentage of the heat transfer contribution is from 18% to 21% for the impingement surface and increases from 16% to 18% for the pin fin surfaces within the studied Reynolds numbers. The total heat transfer contribution of the impingement surface and pin fin surface is 38%, which should be carefully studied for the accurate design of the gas turbine blade-cooling technique.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
X | streamwise direction of test rig |
Y | spanwise direction of test rig |
L | the distance between the film hole and the adjacent pin-fin in X direction (m) |
P | film hole spacing in the Y direction (m) |
S | the distance between the pin-fins (m) |
V | averaged velocity magnitude of coolant at the impingement hole inlet (m/s) |
Kelvin temperature (K) | |
t | Celsius temperature (°C) |
D | diameter of impingement hole (m) |
A | area (m2) |
H | Height (m) |
heat transfer rate (W) |
Greek Letters
density (kg/m3) | |
thermal conductivity (W/(m×K)) | |
dynamic viscosity (kg/(m×s)) | |
n | the number of the spanwise pixels at the fixed x coordination |
m | the number of the streamwise pixels at the fixed y coordination |
the color change time of the liquid crystal coating (s) | |
i | time step |
fin efficiency |
Subscripts
I | impingement |
wall | |
k | serial number of the pixels in streamwise |
j | serial number of the pixels in spanwise |
ave | spanwise averaged |
ave-s | surface averaged |
cir | circumferential |
c | coolant |
o | initial time |
Ip | impingement plate |
Pf | pin fin |
Tp | target plate |
Is | internal surface |
References
- Alenezi, A.H.; Almutairi, A.; Alhajeri, H.M.; Addali, A.; Gamil, A.A.A. Flow structure and heat transfer of jet impingement on a rib-roughened flat plate. Energies 2018, 11, 1550. [Google Scholar] [CrossRef] [Green Version]
- Faris Abdullah, M.; Zulkifli, R.; Harun, Z.; Abdullah, S.; Wan Ghopa, W.A. Experimental and numerical simulation of the heat transfer enhancement on the twin impingement jet mechanism. Energies 2018, 11, 927. [Google Scholar] [CrossRef] [Green Version]
- Taslim, M.E.; Bethka, D. Experimental and numerical impingement heat transfer in an airfoil leading-edge cooling channel with cross-flow. J. Turbomach. 2009, 131, 011021. [Google Scholar] [CrossRef]
- Liu, L.L.; Zhu, X.C.; Liu, H.; Du, Z.H. Effect of tangential jet impingement on blade leading edge impingement heat transfer. Appl. Therm. Eng. 2018, 130, 1380–1390. [Google Scholar] [CrossRef]
- Shashikant, P.; Kumar, P.D. The Impingement Heat Transfer Data of Inclined Jet in Cooling Applications: A Review. J. Therm. Sci. 2020, 29, 11–12. [Google Scholar]
- Fu, J.L.; Cao, Y.; Zhang, C.; Zhu, J.Q. Investigation of the Conjugate Heat Transfer and Flow Field for a Flat Plate with Combined Film and Impingement Cooling. J. Therm. Sci. 2020, 29, 955–971. [Google Scholar] [CrossRef]
- Li, G.C.; Yang, P.; Zhang, W.; Wu, Z.; Kou, Z.H. Enhanced film cooling performance of a row of cylindrical holes embedded in the saw tooth slot. Int. J. Heat Mass Tran. 2019, 132, 1137–1151. [Google Scholar] [CrossRef]
- Fu, W.S.; Chao, W.S.; Tsubokura, M.; Li, C.G.; Wang, W.H. Direct numerical simulation of film cooling with a fan-shaped hole under low Reynolds number conditions. Int. J. Heat Mass Tran. 2018, 123, 544–560. [Google Scholar] [CrossRef]
- Ries, F.; Li, Y.X.; Klingenberg, D.; Nishad, K.; Janicka, J.; Sadiki, A. Near-wall thermal processes in an inclined impinging jet: analysis of heat transport and entropy generation mechanisms. Energies 2018, 11, 1354. [Google Scholar] [CrossRef] [Green Version]
- Carol, E.B.; Connor, J.W.; James, L.R.; Marc, D.P. Experimental evaluations of the relative contributions to overall effectiveness in turbine blade leading edge cooling. J. Turbomach. 2019, 141, 041007. [Google Scholar]
- Kyle, C.; Thomas, N.S.; David, B. Experimentally measured effects of incidence angle on the adiabatic and overall effectiveness of a fully cooled turbine airfoil with shaped showerhead holes. J. Turbomach. 2017, 139, 091007. [Google Scholar]
- Mensch, A.; Thole, K.A. Overall Effectiveness of a blade endwall with jet impingement and film cooling. J. Eng. Gas Turb. Power. 2014, 136, 031901. [Google Scholar] [CrossRef]
- Williams, R.P.; Dyson, T.E.; Bogard, D.G.; Bradshaw, S.D. Sensitivity of the overall effectiveness to film cooling and internal cooling on a turbine vane suction side. J. Turbomach. 2014, 136, 031006. [Google Scholar] [CrossRef]
- Moreno, G.; Narumanchi, S.; Venson, T.; Bennion, K. Micro structured surfaces for single-phase jet impingement heat transfer enhancement. J. Sci. Eng. App. 2013, 5, 031004. [Google Scholar]
- Singh, P.; Zhang, M.Y.; Ahmed, S.; Ramakrishnan, K.R.; Ekkad, S. Effect of micro-roughness shapes on jet impingement heat transfer and fin-effectiveness. Int. J. Heat Mass Tran. 2019, 132, 80–95. [Google Scholar] [CrossRef]
- Rao, Y.; Chen, P.; Zhu, J.Q. An Experimental Study of Impingement Heat Transfer on the Surfaces with Micro W-Shaped Ribs. In Proceedings of the ASME Turbo Expo, Montreal, Canada, 15–19 June 2015. GT2015. [Google Scholar]
- Vinze, R.; Khade, A.; Kuntikana, P.; Ravitej, M.; Suresh, B.; Kesavan, V.; Prabhu, S.V. Effect of dimple pitch and depth on jet impingement heat transfer over dimpled surface impinged by multiple jets. Int. J. Sci. 2019, 145, 105974. [Google Scholar] [CrossRef]
- Andrews, G.E.; Hussain, R.A.; Mkpadi, M.C. Enhanced impingement heat transfer: The influence of impingement X/D for interrupted rib obstacles (rectangular pin fins). J. Turbomach. 2006, 128, 321–330. [Google Scholar] [CrossRef]
- Wang, L.; Sundén, B.; Borg, A.; Abrahamsson, H. Control of jet impingement heat transfer in crossflow by using a rib. Int. J. Heat Mass Tran. 2011, 54, 4157–4166. [Google Scholar] [CrossRef]
- Isman, M.K.; Can, M. Experimental investigation of impingement heat transfer from a round rib-roughened surface. Heat Mass Transf. 2017, 53, 1405–1412. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, H.R.; Xu, W.J.; Liu, C.L. Effect of pin fin arrangement on the heat transfer characteristics in a convergent channel with impingement. Int. J. Heat Mass Transf. 2018, 125, 629–639. [Google Scholar] [CrossRef]
- Rao, Y.; Liu, Y.Y.; Wan, C.Y. Multiple-jet impingement heat transfer in double-wall cooling structures with pin fins and effusion holes. Int. J. Sci. 2018, 133, 106–119. [Google Scholar] [CrossRef]
- Liu, Y.H.; Song, S.J.; Lo, Y.H. Jet impingement heat transfer on target surfaces with longitudinal and transverse grooves. Int. J. Heat Mass Tran. 2013, 58, 292–299. [Google Scholar] [CrossRef]
- Wang, C.L.; Wang, L.; Sundén, B. A novel control of jet impingement heat transfer in cross-flow by a vortex generator pair. Int. J. Heat Mass Tran. 2015, 88, 82–90. [Google Scholar] [CrossRef]
- Singh, D.; Premachandran, B.; Kohli, S. Effect of nozzle shape on jet impingement heat transfer from a circular cylinder. Int. J. Sci. 2015, 96, 45–69. [Google Scholar] [CrossRef]
- Bu, X.Q.; Peng, L.; Lin, G.P.; Bai, L.Z.; Wen, D.S. Experimental study of jet impingement heat transfer on a variable-curvature concave surface in a wing leading edge. Int. J. Heat Mass Tran. 2015, 90, 92–101. [Google Scholar] [CrossRef]
- Pachpute, S.; Premachandran, B. Effect of number of round jets on impingement heat transfer from a heated Cylinder. App. Eng. 2019, 162, 114308. [Google Scholar] [CrossRef]
- Ansu, U.; Godi, S.C.; Pattamatta, A.; Balaji, C. Experimental investigation of the inlet condition on jet impingement heat transfer using liquid crystal thermography. Exp. Fluid Sci. 2017, 80, 363–375. [Google Scholar] [CrossRef]
- Chen, L.L.; Brakmann, R.G.A.; Weigand, B.; Crawford, M.; Poser, R. Detailed heat transfer investigation of an impingement jet array with large jet-to-jet distance. Int. J. Sci. 2019, 146, 106058. [Google Scholar] [CrossRef]
- Schulz, S.; Brack, S.; Terzis, A. On the effects of coating thickness in transient heat transfer experiments using thermochromic liquid crystals. Exp. Fluid Sci. 2016, 70, 196–207. [Google Scholar] [CrossRef]
- Satta, F.; Tanda, G. Measurement of local heat transfer coefficient on the endwall of a turbine blade cascade by liquid crystal thermography. Exp. Fluid Sci. 2014, 58, 209–215. [Google Scholar] [CrossRef]
- Zhou, D.W.; Sun, C.; Liu, L.L.; Zhu, X.C.; Du, Z.H. The effect and correction of concave surfaces on heat transfer in the transient TLC technique. App. Eng. 2019, 150, 412–420. [Google Scholar] [CrossRef]
- Abernethy, R.B.; Benedict, R.P.; Dowdell, R.B. ASME measurement uncertainty. J. Fluids Eng. 1985, 107, 161–164. [Google Scholar] [CrossRef] [Green Version]
- Vedula, R.P.; Metzger, D.E.; Bickford, W.B. Effects of Lateral and Anisotropic Conduction on Determination of Local Convection Heat Transfer Characteristics with Transient Tests and Surface Coatings. In Proceedings of the ASME Winter Annual Meeting, Chicago, IL, USA, 27 November–2 December 1988; pp. 21–27. [Google Scholar]
- Bergman, T.L.; Incropera, F.P.; DeWitt, D.P.; Lavine, A.S. Fundamentals of Heat and Mass Transfer, 7th ed.; John Wiley &Sons, Inc.: New York, NY, USA, 2007; pp. 164–166. [Google Scholar]
D(mm) | Df/D | DPf/D | HIp/D | HPf/D | HTp/D | SX/D | SY/D | L/D | P/D |
---|---|---|---|---|---|---|---|---|---|
30 | 0.5 | 0.8 | 0.6 | 0.6 | 0.8 | 4 | 4 | 4 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhu, H.; Li, G. Experimental Study of Heat Transfer on the Internal Surfaces of a Double-Wall Structure with Pin Fin Array. Energies 2020, 13, 6573. https://doi.org/10.3390/en13246573
Zhang W, Zhu H, Li G. Experimental Study of Heat Transfer on the Internal Surfaces of a Double-Wall Structure with Pin Fin Array. Energies. 2020; 13(24):6573. https://doi.org/10.3390/en13246573
Chicago/Turabian StyleZhang, Wei, Huiren Zhu, and Guangchao Li. 2020. "Experimental Study of Heat Transfer on the Internal Surfaces of a Double-Wall Structure with Pin Fin Array" Energies 13, no. 24: 6573. https://doi.org/10.3390/en13246573
APA StyleZhang, W., Zhu, H., & Li, G. (2020). Experimental Study of Heat Transfer on the Internal Surfaces of a Double-Wall Structure with Pin Fin Array. Energies, 13(24), 6573. https://doi.org/10.3390/en13246573