A New Generation of Thermal Energy Benchmarks for University Buildings
Abstract
:1. Introduction
1.1. Background of Energy Benchmarking Systems
1.2. Display Energy Certificate (DEC)
1.3. Related Works
1.4. The Novelty of the Proposed Method
2. Methodology
- Area (m2)—building useful area and activities area;
- Mixed-use activities—this factor considers all activities in a building and calculates the value of each activity based on its area—the composite benchmark is one of the results of the mixed-use method;
- UCrb (university campus revised benchmark)—the revised benchmark of 130 kWh/m2/yr [8] was used instead of 240 kWh/m2/yr as suggested by CIBSE TM46;
- Heating degree days (HDD);
- Typical operation hours of heating systems—usually influenced by the college’s energy policy, not occupants’ behavior.
2.1. Mixed-Use Model
2.2. Converter Model
3. Application of the Mixed-Use Model
4. Application of the Converter Model
5. Monthly Thermal Energy Benchmarks (MTEBs)
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Appendix A. The Flowchart of Developed Models
References
- Evangelinos, K.I.; Jones, N.; Panoriou, E.M. Challenges and opportunities for sustainability in regional universities: A case study in Mytilene, Greece. J. Clean. Prod. 2009, 17, 1154–1161. [Google Scholar] [CrossRef]
- Locmelis, K.; Blumberga, D.; Blumberga, A.; Kubule, A. Benchmarking of industrial energy efficiency. outcomes of an energy audit policy program. Energies 2020, 13, 2210. [Google Scholar] [CrossRef]
- Kim, H.G.; Kim, S.S. Development of energy benchmarks for office buildings using the national energy consumption database. Energies 2020, 13, 950. [Google Scholar] [CrossRef] [Green Version]
- Chartered Institution of Building Services Engineers; CIBSE TM46; Energy Institue, University College, CIBSE: London, UK, 2008.
- Hong, S.-M.; Steadman, P. An Analysis of Display Energy Certificates for Public Buildings, 2008 to 2012, a Report to Chartered Institution of Building Services Engineering; Energy Institue, University College, CIBSE: London, UK, 2013. [Google Scholar]
- Hawkins, D.; Hong, S.M.; Raslan, R.; Mumovic, D.; Hanna, S. Determinants of energy use in UK higher education buildings using statistical and artificial neural network methods. Int. J. Sustain. Built Environ. 2012, 1, 50–63. [Google Scholar] [CrossRef] [Green Version]
- Bruhns, H.; Jones, P.; Cohen, R. CIBSE review of energy benchmarks for display energy certificates. In Proceedings of the CIBSE Technical Symposium, Leicester, UK, 6–7 September 2011. [Google Scholar]
- Vaisi, S.; Pilla, F.; McCormack, S.J. Recommending a thermal energy benchmark based on CIBSE TM46 for typical college buildings and creating monthly energy models. Energy Build. 2018, 176, 296–309. [Google Scholar] [CrossRef]
- Javanroodi, K.; Mahdavinejad, M.; Nik, V.M. Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate. Appl. Energy 2018, 231, 714–746. [Google Scholar] [CrossRef]
- Pérez-Lombard, L.; Ortiz, J.; González, R.; Maestre, I.R. A review of benchmarking, rating and labelling concepts within the framework of building energy certification schemes. Energy Build. 2009, 41, 272–278. [Google Scholar] [CrossRef]
- International Energy Agency. Energy Performance Certification of Building, a Policy Tool to Improve Energy Efficiency; International Energy Agency: Paris, France, 2010. [Google Scholar]
- The Council of the European Commuities. European Council Directive 93/76/EEC, 13 September 1993; European Commuities, Ed.; The Council of the European Commuities: Brussels, Belgium, 1993. [Google Scholar]
- Sustainable Energy Authority Ireland (Seai). What is the Total Primary Energy Requirement (TPER)? Available online: http://www.seai.ie/Your_Business/Public_Sector/FAQ/Calculating_Savings_Tracking_Progress/What_is_the_Total_Primary_Energy_Requirement.html (accessed on 28 December 2015).
- Chartered Institution of Building Services Engineers; CIBSE TM47; CIBSE: London, UK, 2009.
- Carbon Trust. The Carbon Trust Annual Report 2012/2013, Accelerating the Move to a Sustainable, Low Carbon Economy; Carbon Trust: London, UK, 2013. [Google Scholar]
- Hong, S.-M.; Paterson, G.; Burman, E.; Steadman, P.; Mumovic, D. A comparative study of benchmarking approaches for non-domestic buildings: Part 1—Top-down approach. Int. J. Sustain. Built Environ. 2013, 2, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Burman, E.; Hong, S.-M.; Paterson, G.; Kimpian, J.; Mumovic, D. A comparative study of benchmarking approaches for non-domestic buildings: Part 2—Bottom-up approach. Int. J. Sustain. Built Environ. 2014, 3, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Burman, E.; Mumovic, D.; Kimpian, J. Towards measurement and verification of energy performance under the framework of the European directive for energy performance of buildings. Energy 2014, 77, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Salah, V.; Mark, D.; Francesco, P. Energy requirement mapping for university campus using CIBSE benchmarks and comparing CIBSE to display energy certificate (DEC) to extract a new criterion. In Proceedings of the Energy Systems Conference, London, UK, 24–25 June 2014. [Google Scholar]
- EPBD Energy Performance of Building Directive. Directive 2002/91/CE of the European Parliament and Council from 16 of December 2002. Off. J. Eur. Communities 2003. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32002L0091&from=IT (accessed on 12 September 2020).
- Borgstein, E.H.; Lamberts, R.; Hensen, J.L.M. Evaluating energy performance in non-domestic buildings: A review. Energy Build. 2016, 128, 734–755. [Google Scholar] [CrossRef]
- Lee, W.-S.; Lee, K.-P. Benchmarking the performance of building energy management using data envelopment analysis. Appl. Therm. Eng. 2009, 29, 3269–3273. [Google Scholar] [CrossRef]
- Pasichnyi, O.; Wallin, J.; Levihn, F.; Shahrokni, H.; Kordas, O. Energy performance certificates—New opportunities for data-enabled urban energy policy instruments? Energy Policy 2019, 127, 486–499. [Google Scholar] [CrossRef]
- Burman, E.; Kimpian, J.; Mumovic, D. Building schools for the future: Lessons learned from performance evaluations of five secondary schools and academies in England. Front. Built Environ. 2018, 4. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, S.; Bonczak, B.; Kontokosta, C.E. Pattern recognition in building energy performance over time using energy benchmarking data. Appl. Energy 2018, 221, 576–586. [Google Scholar] [CrossRef] [Green Version]
- Roth, J.; Rajagopal, R. Benchmarking building energy efficiency using quantile regression. Energy 2018, 152, 866–876. [Google Scholar] [CrossRef]
- Liu, J.; Chen, H.; Liu, J.; Li, Z.; Huang, R.; Xing, L.; Wang, J.; Li, G. An energy performance evaluation methodology for individual office building with dynamic energy benchmarks using limited information. Appl. Energy 2017, 206, 193–205. [Google Scholar] [CrossRef]
- Park, J.Y.; Yang, X.; Miller, C.; Arjunan, P.; Nagy, Z. Apples or oranges? Identification of fundamental load shape profiles for benchmarking buildings using a large and diverse dataset. Appl. Energy 2019, 236, 1280–1295. [Google Scholar] [CrossRef]
- Lamagna, M.; Nastasi, B.; Groppi, D.; Nezhad, M.M.; Garcia, D.A. Hourly energy profile determination technique from monthly energy bills. Build. Simul. 2020, 13, 1235–1248. [Google Scholar] [CrossRef]
- Mancini, F.; Nastasi, B. Energy retrofitting effects on the energy flexibility of dwellings. Energies 2019, 12, 2788. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, S.; Kontokosta, C.E. Grading buildings on energy performance using city benchmarking data. Appl. Energy 2019, 233–234, 244–253. [Google Scholar] [CrossRef]
- Seyedzadeh, S.; Rahimian, F.P.; Glesk, I.; Roper, M. Machine learning for estimation of building energy consumption and performance: A review. Vis. Eng. 2018, 6, 5. [Google Scholar] [CrossRef]
- Koo, C.; Hong, T. Development of a dynamic operational rating system in energy performance certificates for existing buildings: Geostatistical approach and data-mining technique. Appl. Energy 2015, 154, 254–270. [Google Scholar] [CrossRef]
- Yan, C.; Wang, S.; Xiao, F.; Gao, D.-C. A multi-level energy performance diagnosis method for energy information poor buildings. Energy 2015, 83, 189–203. [Google Scholar] [CrossRef]
- Khoshbakht, M.; Gou, Z.; Dupre, K. Energy use characteristics and benchmarking for higher education buildings. Energy Build. 2018, 164, 61–76. [Google Scholar] [CrossRef] [Green Version]
- Zhan, S.; Liu, Z.; Chong, A.; Yan, D. Building categorization revisited: A clustering-based approach to using smart meter data for building energy benchmarking. Appl. Energy 2020, 269, 114920. [Google Scholar] [CrossRef]
- Arjunan, P.; Poolla, K.; Miller, C. EnergyStar++: Towards more accurate and explanatory building energy benchmarking. Appl. Energy 2020, 276, 115413. [Google Scholar] [CrossRef]
- Wei, Z.; Xu, W.; Wang, D.; Li, L.; Niu, L.; Wang, W.; Wang, B.; Song, Y. A study of city-level building energy efficiency benchmarking system for China. Energy Build. 2018, 179, 1–14. [Google Scholar] [CrossRef]
- Cylon. Cylon Active Energy Management. Available online: https://cylonaem.com/energy/#v=1&t=9&c=0 (accessed on 10 March 2015).
- Heating Degree Days. BizEE Software, Degree Days.Net—Custom Degree Day Data. Available online: http://www.degreedays.net/ (accessed on 2 January 2016).
- Manfren, M.; Nastasi, B.; Tronchin, L. Linking design and operation phase energy performance analysis through regression-based approaches. Front. Energy Res. 2020, 8, 557649. [Google Scholar] [CrossRef]
Months | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Total Year |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean operation of 10 buildings | 300 | 280 | 260 | 250 | 240 | 85 | 45 | 35 | 80 | 223 | 249 | 229 | 2276 |
Activity | Area (m2) | % of Total Useful Floor Area | Category Name | Category No | TM46 Benchmarks |
---|---|---|---|---|---|
Seminar and research room | 817 | 22 | UC | 18 | UCrb:130 |
Office | 1651 | 45 | General office | 1 | 120 |
Computer rooms and Laboratory | 1014 | 29 | Laboratory | 24 | 160 |
workshops | 48 | 1 | Workshop | 27 | 180 |
Coffee shop | 47 | 1 | Restaurant | 7 | 370 |
Library | 70 | 2 | Cultural activities | 10 | 200 |
Total | 3647 | 100 | --- | --- | ---- |
Months | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
HDD | 303 | 274 | 267 | 182 | 133 | 63 | 32 | 70 | 72 | 132 | 225 | 316 |
Annual | 2069 |
Activities | Area (m2) | % Area of Activities (m2) |
---|---|---|
Computer rooms and Laboratory | 683 | 19 |
Office | 1553 | 43 |
Seminar, class, and Research room | 965 | 26 |
Library | 324 | 9 |
Stores | 120 | 3 |
Total | 3645 | 100 |
Months | Actual Gas Consumption, Museum Building 2012 (kWh/yr) | HDD 2012 | Typical Operation of Heating Systems (Hours) | Mixed-Use Model (kWh/yr) | TM46 Mean Monthly (kWh/yr) | MAPE of the Mixed-Use Model | MAPE of TM46 (Mean Monthly) |
---|---|---|---|---|---|---|---|
January | 64,200 | 281 | 300 | 57,414 | 72,900 | 11 | 14 |
February | 51,374 | 253 | 280 | 48,247 | 72,900 | 6 | 42 |
March | 47,607 | 224 | 260 | 39,666 | 72,900 | 17 | 53 |
April | 39,534 | 264 | 250 | 44,951 | 72,900 | 14 | 84 |
May | 28,433 | 171 | 240 | 27,951 | 72,900 | 2 | 156 |
June | 0 | 93 | 85 | 5383 | 72,900 | * | * |
July | 0 | 66 | 45 | 2023 | 72,900 | * | * |
August | 751 | 36 | 35 | 858 | 72,900 | 14 | 9607 |
September | 5276 | 110 | 80 | 5993 | 72,900 | 14 | 1282 |
October | 40,697 | 214 | 223 | 32,502 | 72,900 | 20 | 79 |
November | 53,484 | 272 | 249 | 46,128 | 72,900 | 14 | 36 |
December | 56,758 | 310 | 229 | 48,349 | 72,900 | 15 | 28 |
Total | 388,114 | 2294 | 2276 | 359,466 | 874,800 | 7 | 125 |
Months | Actual Gas Consumption (kWh) | Mixed Use Model (kWh) | Converter Model (kWh) | TM46 Estimation(Mean Annual) (kWh) | MAPE of Mixed Use Model | MAPE of Converter Model | MAPE of TM46 |
---|---|---|---|---|---|---|---|
January | 71,907 | 64,550 | 82,407 | 81,320 | 10 | 15 | 13 |
February | 63,696 | 54,244 | 69,249 | 81,320 | 15 | 9 | 28 |
March | 47,268 | 44,538 | 56,859 | 81,320 | 6 | 20 | 72 |
April | 55,451 | 50,538 | 64,518 | 81,320 | 9 | 16 | 47 |
May | 34,113 | 31,425 | 40,118 | 81,320 | 8 | 18 | 138 |
June | 6739 | 6053 | 7727 | 81,320 | 10 | 15 | 1107 |
July | 2784 | 2274 | 2903 | 81,320 | 18 | 4 | 2821 |
August | 1116 | 965 | 1232 | 81,320 | 14 | 10 | 7187 |
September | 8544 | 6738 | 8602 | 81,320 | 21 | 1 | 852 |
October | 39,015 | 36,569 | 46,685 | 81,320 | 6 | 20 | 108 |
November | 54,489 | 51,895 | 66,252 | 81,320 | 5 | 22 | 49 |
December | 66,876 | 54,438 | 69,497 | 81,320 | 19 | 4 | 22 |
Total | 451,998 | 404,227 | 516,051 | 975,840 | 11 | 14 | 116 |
Months | MTEBs Based on Mixed-Use Model (kWh/m2/month) | MTEBs based on Converter Model (kWh/m2/month) | MTEBs Mean of Both Models (kWh/m2/month) | Mean of Actual Thermal Consumption of 10 Buildings (kWh/m2/month) | TM46 Benchmark (kWh/m2/yr) |
---|---|---|---|---|---|
January | 21 | 28 | 24 | 24 | - |
February | 17 | 23 | 20 | 20 | - |
March | 16 | 21 | 19 | 18 | - |
April | 10 | 14 | 12 | 13 | - |
May | 7 | 10 | 9 | 7 | - |
June | 1 | 2 | 1 | 2 | - |
July | 0 | 0 | 0 | 1 | - |
August | 1 | 1 | 1 | 1 | - |
September | 1 | 2 | 2 | 2 | - |
October | 7 | 9 | 8 | 8 | - |
November | 13 | 17 | 15 | 15 | - |
December | 17 | 22 | 19 | 18 | - |
Total | 111 | 149 | 130 | 128 | 240 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaisi, S.; Mohammadi, S.; Nastasi, B.; Javanroodi, K. A New Generation of Thermal Energy Benchmarks for University Buildings. Energies 2020, 13, 6606. https://doi.org/10.3390/en13246606
Vaisi S, Mohammadi S, Nastasi B, Javanroodi K. A New Generation of Thermal Energy Benchmarks for University Buildings. Energies. 2020; 13(24):6606. https://doi.org/10.3390/en13246606
Chicago/Turabian StyleVaisi, Salah, Saleh Mohammadi, Benedetto Nastasi, and Kavan Javanroodi. 2020. "A New Generation of Thermal Energy Benchmarks for University Buildings" Energies 13, no. 24: 6606. https://doi.org/10.3390/en13246606
APA StyleVaisi, S., Mohammadi, S., Nastasi, B., & Javanroodi, K. (2020). A New Generation of Thermal Energy Benchmarks for University Buildings. Energies, 13(24), 6606. https://doi.org/10.3390/en13246606