Simulation of the Fast Pyrolysis of Coffee Ground in a Tilted-Slide Reactor
Abstract
:1. Introduction
2. Numerical Simulation
2.1. Characterization of the Coffee Ground Composition
2.2. Simulation Method
3. Results and Discussion
3.1. Overall Product Yields
3.2. Characteristics of Temperature, Pressure and Species Distributions
3.3. Species Yields and Pyrolysis Progress in the Tilted-Slide Reactor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bridgwater, A.V.; Meier, D.; Radlein, D. An overview of fast pyrolysis of biomass. Org. Geochem. 1999, 30, 1479–1493. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U.; Steele, P.H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels 2006, 20, 848–889. [Google Scholar] [CrossRef]
- Lu, Q.; Li, W.Z.; Zhu, X.F. Overview of fuel properties of biomass fast pyrolysis oils. Energy Convers. Manag. 2009, 50, 1376–1383. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Bok, J.P.; Choi, H.S.; Choi, J.W.; Choi, Y.S. Fast pyrolysis of Miscanthus sinensis in fluidized bed reactors: Characteristics of product yields and biocrude oil quality. Energy 2013, 60, 44–52. [Google Scholar] [CrossRef]
- Wagenaar, B.M.; Prins, W.; van Swaaij, W.P.M. Pyrolysis of biomass in the rotating cone reactor: Modelling and experimental justification. Chem. Eng. Sci. 1994, 49, 5109–5126. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Akarregi, A.R.; Makibar, J.; Lopez, G.; Amutio, M.; Olazar, M. Design and operation of a conical spouted bed reactor pilot plant (25 kg/h) for biomass fast pyrolysis. Fuel Process. Technol. 2013, 112, 48–56. [Google Scholar] [CrossRef]
- Ingram, L.; Mohan, D.; Bricka, M.; Steele, P.; Strobel, D.; Mitchell, B.; Mohammad, J.; Cantrell, K.; Pittman, C.U., Jr. Pyrolysis of Wood and Bark in an Auger Reactor: Physical Properties and Chemical Analysis of the Produced Bio-oils Pyrolysis of Wood and Bark in an Auger Reactor: Physical Properties and Chemical Analysis of the Produced Bio-oils. Energy Fuels 2008, 22, 614–625. [Google Scholar] [CrossRef]
- Choi, Y.S.; Choi, S.K.; Jeong, Y.W. Development of a tilted-slide reactor for the fast pyrolysis of biomass. Environ. Prog. Sustain. Energy 2014, 33. [Google Scholar] [CrossRef]
- Lathouwers, D.; Bellan, J. Modeling of dense gas-solid reactive mixtures applied to biomass pyrolysis in a fluidized bed. Int. J. Multiph. Flow 2001, 27, 2155–2187. [Google Scholar] [CrossRef]
- Lathouwers, D.; Bellan, J. Yield Optimization and Scaling of Fluidized Beds for Tar Production from Biomass. Energy Fuels 2001, 15, 1247–1262. [Google Scholar] [CrossRef]
- Xue, Q.; Heindel, T.J.; Fox, R.O. A CFD model for biomass fast pyrolysis in fluidized-bed reactors. Chem. Eng. Sci. 2011, 66, 2440–2452. [Google Scholar] [CrossRef]
- Xue, Q.; Dalluge, D.; Heindel, T.J.; Fox, R.O.; Brown, R.C. Experimental validation and CFD modeling study of biomass fast pyrolysis in fluidized-bed reactors. Fuel 2012, 97, 757–769. [Google Scholar] [CrossRef]
- Ranganathan, P.; Gu, S. Bioresource Technology Computational fluid dynamics modelling of biomass fast pyrolysis in fluidised bed reactors, focusing different kinetic schemes. Bioresour. Technol. 2016, 213, 333–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandão, F.L.; Verissimo, G.L.; Leite, M.A.H.; Leiroz, A.J.K.; Cruz, M.E. Computational Study of Sugarcane Bagasse Pyrolysis Modeling in a Bubbling Fluidized Bed Reactor. Energy Fuels 2018, 32, 1711–1723. [Google Scholar] [CrossRef]
- Sia, S.Q.; Wang, W.C. Numerical simulations of fluidized bed fast pyrolysis of biomass through computational fluid dynamics. Renew. Energy 2020, 155, 248–256. [Google Scholar] [CrossRef]
- Shuangning, X.; Zhihe, L.; Baoming, L.; Weiming, Y.; Xueyuan, B. Devolatilization characteristics of biomass at flash heating rate. Fuel 2006, 85, 664–670. [Google Scholar] [CrossRef]
- Sun, S.; Tian, H.; Zhao, Y.; Sun, R.; Zhou, H. Experimental and numerical study of biomass flash pyrolysis in an entrained flow reactor. Bioresour. Technol. 2010, 101, 3678–3684. [Google Scholar] [CrossRef]
- Richter, A.; Vascellari, M.; Nikrityuk, P.A.; Hasse, C. Detailed analysis of reacting particles in an entrained-flow gasifier. Fuel Process. Technol. 2016, 144, 95–108. [Google Scholar] [CrossRef]
- Lopez, G.; Alvarez, J.; Amutio, M.; Hooshdaran, B.; Cortazar, M.; Haghshenasfard, M.; Hosseini, S.H.; Olazar, M. Kinetic modeling and experimental validation of biomass fast pyrolysis in a conical spouted bed reactor. Chem. Eng. J. 2019, 373, 677–686. [Google Scholar] [CrossRef]
- Park, H.C.; Choi, H.S. Fast pyrolysis of biomass in a spouted bed reactor: Hydrodynamics, heat transfer and chemical reaction. Renew. Energy 2019, 143, 1268–1284. [Google Scholar] [CrossRef]
- Moliner, C.; Marchelli, F.; Spanachi, N.; Martinez-Felipe, A.; Bosio, B.; Arato, E. CFD simulation of a spouted bed: Comparison between the Discrete Element Method (DEM) and the Two Fluid Model (TFM). Chem. Eng. J. 2019, 377, 120466. [Google Scholar] [CrossRef] [Green Version]
- Ranzi, E.; Cuoci, A.; Faravelli, T.; Frassoldati, A.; Migliavacca, G.; Pierucci, S.; Sommariva, S. Chemical kinetics of biomass pyrolysis. Energy Fuels 2008, 22, 4292–4300. [Google Scholar] [CrossRef]
- Calonaci, M.; Grana, R.; Barker Hemings, E.; Bozzano, G.; Dente, M.; Ranzi, E. Comprehensive kinetic modeling study of bio-oil formation from fast pyrolysis of biomass. Energy Fuels 2010, 24, 5727–5734. [Google Scholar] [CrossRef]
- Corbetta, M.; Frassoldati, A.; Bennadji, H.; Smith, K.; Serapiglia, M.J.; Gauthier, G.; Melkior, T.; Ranzi, E.; Fisher, E.M. Pyrolysis of centimeter-scale woody biomass particles: Kinetic modeling and experimental validation. Energy Fuels 2014, 28, 3884–3898. [Google Scholar] [CrossRef]
- Debiagi, P.E.A.; Pecchi, C.; Gentile, G.; Frassoldati, A.; Cuoci, A.; Faravelli, T.; Ranzi, E. Extractives Extend the Applicability of Multistep Kinetic Scheme of Biomass Pyrolysis. Energy Fuels 2015, 29, 6544–6555. [Google Scholar] [CrossRef]
- Ranzi, E.; Debiagi, P.E.A.; Frassoldati, A. Mathematical Modeling of Fast Biomass Pyrolysis and Bio-Oil Formation. Note I: Kinetic Mechanism of Biomass Pyrolysis. ACS Sustain. Chem. Eng. 2017, 5, 2867–2881. [Google Scholar] [CrossRef]
- Bok, J.P.; Choi, Y.S.; Choi, S.K.; Jeong, Y.W. Fast pyrolysis of Douglas fir by using tilted-slide reactor andcharacteristics of biocrude-oil fractions. Renew. Energy 2014, 65, 7–13. [Google Scholar] [CrossRef]
- Choi, Y.S.; Choi, S.K.; Kim, S.J.; Jeong, Y.W.; Soysa, R.; Rahman, T. Fast pyrolysis of coffee ground in a tilted-slide reactor and characteristics of biocrude oil. Environ. Prog. Sustain. Energy 2017, 36, 655–661. [Google Scholar] [CrossRef]
- Choi, Y.; Choi, S.; Kim, S.; Han, S.; Jeong, Y. Effect of Biomass Particle Size on the Fast Pyrolysis Characteristics of Palm Kernel Shell to Produce Biocrude-oil. New Renew. Energy 2017, 13, 55–63. [Google Scholar] [CrossRef]
- Choi, S.K.; Choi, Y.S.; Kim, S.J.; Han, S.Y.; Jeong, Y.W.; Kwon, Y.S.; Van Nguyen, Q. Simulation of a tilted-slide reactor for the fast pyrolysis of biomass. Biomass Bioenergy 2019, 126, 94–105. [Google Scholar] [CrossRef]
- Ranzi, E.; Debiagi, P.E.A.; Frassoldati, A. Mathematical Modeling of Fast Biomass Pyrolysis and Bio-Oil Formation. Note II: Secondary Gas-Phase Reactions and Bio-Oil Formation. ACS Sustain. Chem. Eng. 2017, 5, 2882–2896. [Google Scholar] [CrossRef]
- USDA. Foreign Agricultural Service Coffee: World Markets and Trade; USDA: Washington, DC, USA, 2019; pp. 1–9. Available online: https://www.fas.usda.gov/data/coffee-world-markets-and-trade (accessed on 29 April 2020).
- CD-adapco User Guide. In STAR-CCM+ Version 9.06; CD-adapco: New York, NY, USA, 2014.
- Gunn, D.J. Transfer of heat or mass to particles in fixed and fluidised beds. Int. J. Heat Mass Transf. 1978, 21, 467–476. [Google Scholar] [CrossRef]
- Seshadri, V.; Westmoreland, P.R. Concerted reactions and mechanism of glucose pyrolysis and implications for cellulose kinetics. J. Phys. Chem. A 2012, 116, 11997–12013. [Google Scholar] [CrossRef] [PubMed]
- Vinu, R.; Broadbelt, L.J. A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition. Energy Environ. Sci. 2012, 5, 9808–9826. [Google Scholar] [CrossRef]
- Zhou, X.; Nolte, M.W.; Mayes, H.B.; Shanks, B.H.; Broadbelt, L.J. Experimental and mechanistic modeling of fast pyrolysis of neat glucose-based carbohydrates. 1. Experiments and development of a detailed mechanistic model. Ind. Eng. Chem. Res. 2014, 53, 13274–13289. [Google Scholar] [CrossRef] [Green Version]
- Faravelli, T.; Frassoldati, A.; Migliavacca, G.; Ranzi, E. Detailed kinetic modeling of the thermal degradation of lignins. Biomass Bioenergy 2010, 34, 290–301. [Google Scholar] [CrossRef]
- Oasmaa, A.; Sundqvist, T.; Kuoppala, E.; Garcia-Perez, M.; Solantausta, Y.; Lindfors, C.; Paasikallio, V. Controlling the phase stability of biomass fast pyrolysis bio-oils. Energy Fuels 2015, 29, 4373–4381. [Google Scholar] [CrossRef]
- Goodwin, D.G.; Speth, R.L.; Moffat, H.K.; Weber, B.W. Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Available online: https://www.cantera.org (accessed on 9 September 2020).
- Blondeau, J.; Jeanmart, H. Biomass pyrolysis at high temperatures: Prediction of gaseous species yields from an anisotropic particle. Biomass Bioenergy 2012, 41, 107–121. [Google Scholar] [CrossRef]
- Mellin, P.; Kantarelis, E.; Yang, W. Computational fluid dynamics modeling of biomass fast pyrolysis in a fluidized bed reactor, using a comprehensive chemistry scheme. Fuel 2014, 117, 704–715. [Google Scholar] [CrossRef]
- Anca-Couce, A.; Sommersacher, P.; Scharler, R. Online experiments and modelling with a detailed reaction scheme of single particle biomass pyrolysis. J. Anal. Appl. Pyrolysis 2017, 127, 411–425. [Google Scholar] [CrossRef]
- Park, W.C.; Atreya, A.; Baum, H.R. Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis. Combust. Flame 2010, 157, 481–494. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Zheng, C.; Lee, D.H.; Liang, D.T. In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy Fuels 2006, 20, 388–393. [Google Scholar] [CrossRef]
Moisture | Volatile | Fixed Carbon | Ash |
---|---|---|---|
6.10 | 72.22 | 18.91 | 2.77 |
C | H | O * | N | S |
---|---|---|---|---|
52.54 | 6.83 | 37.79 | 2.84 | 0 |
Species | Mass Fraction |
---|---|
CELL | 0.3487 |
HECELL | 0.1894 |
LIG-H | 0.1431 |
LIG-O | 0.0444 |
LIG-C | 0.0280 |
TGL | 0.1577 |
Moisture | 0.0610 |
Ash | 0.0277 |
Name | Formula | Note |
---|---|---|
CELL | C6H10O5 | Cellulose |
HECELL | C5H8O4 | Hemicellulose |
LIGC | C15H14O4 | Lignin rich in carbon |
LIGH | C22H28O9 | Lignin rich in hydrogen |
LIGO | C20H22O10 | Lignin rich in oxygen |
TGL | C57H100O7 | Triglyceride |
ACQUA | H2O | Water |
ASH | ASH | Ash |
CELLA | C6H10O5 | Intermediate species |
HCE1 | C5H8O4 | |
HCE2 | C5H8O4 | |
LIGCC | C15H14O4 | |
LIGOH | C19H22O8 | |
LIG | C11H12O4 | |
Char | C | Char |
G{H2} | H2 | Metaplastic |
G{CO} | CO | |
G{CO2} | CO2 | |
G{COH2} | COH2 | |
G{CH4} | CH4 | |
G{CH3OH} | CH3OH | |
G{C2H4} | C2H4 |
Formula | Note | |
---|---|---|
Volatile (Condensable) | H2O | water |
CH2O | formaldehyde | |
HCOOH | formic-acid | |
CH3OH | methanol | |
C2H2O2 | glyoxal | |
CH3CHO | acetaldehyde | |
CH3COOH | acetic-acid | |
C2H4O2 | hydroxyacetaldehyde | |
C2H5OH | ethanol | |
C2H3CHO | acrolein | |
C2H5CHO | propionaldehyde | |
C3H6O2 | 3-hydroxypropanal | |
C5H4O2 | furan-2-carboxaldehyde(furfural) | |
C5H8O4 | xylofuranose | |
C6H5OH | phenol | |
C6H6O3 | 5-(hydroxymethyl)-furfural | |
C6H10O5 | levoglucosan | |
C6H5OCH3 | anisole | |
C9H10O2 | 4-(3-hydroxy-1-propenyl)phenol(pCoumaryl) | |
C11H12O4 | 3-(4-hydroxy-3_5-dimethoxyphenyl)acrylaldehyde | |
C13H22O2 | double_unsaturated_methyl_ester | |
C19H34O2 | methyl_linoleate | |
Noncondensable | H2 | hydrogen |
CO | carbon-monoxide | |
CO2 | carbon-dioxide | |
CH4 | methane | |
C2H4 | ethylene | |
C | carbon |
Pyrolysis Reactions | Kinetic Parameters A(s−1), Ea(kcal/kmol) | |||
---|---|---|---|---|
Cellulose | ||||
1 | CELL | → | CELLA | 1.5 × 1014 × exp(−47000/RT) |
2 | CELLA | → | 0.4 C2H4O2 + 0.05 C2H2O2 + 0.15 CH3CHO + 0.25 C6H6O3 + 0.35 C2H5CHO + 0.15 CH3OH + 0.3 CH2O + 0.61 CO + 0.36 CO2 + 0.05 H2 + 0.93 H2O + 0.02 HCOOH + 0.05 C3H6O2 + 0.05 G{CH4} + 0.2 G{H2} + 0.61 CHAR | 2.5 × 106 × exp(−18871/RT) |
3 | CELLA | → | C6H10O5 | 3.3 × T × exp(−10000/RT) |
4 | CELL | → | 5 H2O + 6 CHAR | 6 × 107 × exp(−30618/RT) |
Hemicellulose | ||||
5 | HECELL | → | 0.58 HCE1 + 0.42 HCE2 | 1 × 1010 × exp(−31000/RT) |
6 | HCE1 | → | 0.6 C5H8O4 + 0.2 C3H6O2 + 0.12 C2H2O2 + 0.2 C5H4O2 + 0.4 H2O + 0.08 G{H2} + 0.16 CO | 3 × T × exp(−10618/RT) |
7 | HCE1 | → | 0.4 H2O + 0.79 CO2 + 0.05 HCOOH + 0.69 CO + 0.01 G{CO} + 0.01 G{CO2} +0.35 G{H2} + 0.3 CH2O + 0.9 G{COH2} + 0.625 G{CH4} + 0.375 G{C2H4} + 0.875 CHAR | 1.8 × 10−3 × T × exp(−2618/RT) |
8 | HCE2 | → | 0.2 H2O + 0.275 CO + 0.175 CO2 + 0.4 CH2O + 0.1 C2H5OH + 0.05 C2H4O2 + 0.35 CH3COOH + 0.025 HCOOH + 0.25 G{CH4} + 0.3 G{CH3OH} + 0.225 G{C2H4} + 0.4 G{CO2} + 0.725 G{COH2} + CHAR | 5 × 109 × exp(−31500/RT) |
Lignins | ||||
9 | LIGC | → | 0.35 LIGCC + 0.1 C9H10O2 + 0.08 C6H5OH + 0.41 C2H4 + 1.0 H2O + 0.7 G{COH2} + 0.3 CH2O + 0.32 CO + 0.495 G{CH4} + 5.735 CHAR | 1 × 1011 × exp(−37200/RT) |
10 | LIGH | → | LIGOH + 0.5 C2H5CHO + 0.5 C2H4 + 0.2 C2H4O2 + 0.1 CO + 0.1 G{H2} | 6.7 × 1012 × exp(−37500/RT) |
11 | LIGO | → | LIGOH + CO2 | 3.3 × 108 × exp(−25500/RT) |
12 | LIGCC | → | 0.3 C9H10O2 + 0.2 C6H5OH + 0.35 C2H4O2 + 0.7 H2O + 0.65 CH4 + 0.6 C2H4 + H2 + 1.4 CO + 0.4 G{CO} + 6.75 CHAR | 1 × 104 × exp(−24800/RT) |
13 | LIGOH | → | LIG + 0.9 H2O + 0.1 CH4 + 0.6 CH3OH + 0.1 G{H2} + 0.3 G{CH3OH} + 0.05 CO2 + 0.55 CO + 0.6 G{CO} + 0.05 HCOOH + 0.85 G{COH2} + 0.35 G{CH4} + 0.2 G{C2H4} + 4.15 CHAR | 1 × 108 × exp(−30000/RT) |
14 | LIG | → | 0.7 C11H12O4 + 0.3 C6H5OCH3 + 0.3 CO + 0.3 G{CO} + 0.3 CH3CHO | 4 × T × exp(−12000/RT) |
15 | LIG | → | 0.6 H2O + 0.4 CO + 0.2 CH4 + 0.4 CH2O + 0.2 G{CO} + 0.4 G{CH4} + 0.5 G{C2H4} + 0.4 G{CH3OH} + 2 G{COH2} + 6 CHAR | 8.3 × 10−2 × T × exp(−8000/RT) |
16 | LIG | → | 0.6 H2O + 2.6 CO + 1.1 CH4 + 0.4 CH2O + C2H4 + 0.4 CH3OH + 4.5 CHAR | 1 × 107 × exp(−24300/RT) |
Extractive | ||||
17 | TGL | → | C2H3CHO + 0.5 C13H22O2 + 2.5 C19H34O2 | 7 × 1012 × exp(−45700/RT) |
Metaplastic | ||||
18 | G{CO2} | → | CO2 | 1 × 10 6 × exp(−24000/RT) |
19 | G{CO} | → | CO | 5 × 10 12× exp(−50000/RT) |
20 | G{COH2} | → | CO + H2 | 1.5 × 10 12× exp(−71000/RT) |
21 | G{H2} | → | H2 | 5 × 10 11× exp(−75000/RT) |
22 | G{CH4} | → | CH4 | 5 × 10 12× exp(−71500/RT) |
23 | G{CH3OH} | → | CH3OH | 2 × 10 12 × exp(−50000/RT) |
24 | G{C2H4} | → | C2H4 | 5 × 10 12× exp(−71500/RT) |
H2O Evaporation | ||||
25 | ACQUA | → | H2O | 1 × T × exp(−8000/RT) |
Reactions | Kinetic Parameters A(s−1), Ea(J/mol) | |||
---|---|---|---|---|
1 | CH2O | → | H2 + CO | 1.2 × 105 × exp(−108000/RT) |
2 | HCOOH | → | H2 + CO2 | 1.2 × 105 × exp(−108000/RT) |
3 | CH3OH | → | 1.5 H2 + 0.5 CO + 0.25 CO2 + 0.25 CH4 | 1.2 × 105 × exp(−108000/RT) |
4 | C2H2O2 | → | H2 + 2 CO | 1.2 × 105 × exp(−108000/RT) |
5 | CH3CHO | → | CO + CH4 | 1.2 × 105 × exp(−108000/RT) |
6 | CH3COOH | → | 1.5 H2 + 1.5 CO + 0.25 CO2 + 0.25 CH4 | 1.2 × 105 × exp(−108000/RT) |
7 | C2H4O2 | → | 1.5 H2 + 1.5 CO + 0.25 CO2 + 0.25 CH4 | 1.2 × 105 × exp(−108000/RT) |
8 | C2H5OH | → | H2 + CO + CH4 | 1.2 × 105 × exp(−108000/RT) |
9 | C2H3CHO | → | CO + C2H4 | 1.2 × 105 × exp(−108000/RT) |
10 | C2H5CHO | → | 0.5 CO2 + 0.5 CH4 + C2H4 | 1.2 × 105 × exp(−108000/RT) |
11 | C3H6O2 | → | H2 + 2 CO + CH4 | 1.2 × 107 × exp(−108000/RT) |
12 | C5H4O2 | → | 2 CO + C2H4 + C | 1.2 × 105 × exp(−108000/RT) |
13 | C5H8O4 | → | H2 + 2 CO2 + 1.5 C2H4 | 1.2 × 105 × exp(−108000/RT) |
14 | C6H5OH | → | CO + 0.5 CH4 + C2H4 + 2.5 C | 1.2 × 105 × exp(−108000/RT) |
15 | C6H6O3 | → | 3 CO + 1.5 C2H4 | 1.2 × 105 × exp(−108000/RT) |
16 | C6H10O5 | → | 1.5 H2 + 2.5 CO2 + 1.75 C2H4 | 1.2 × 105 × exp(−108000/RT) |
17 | C6H5OCH3 | → | CO + 2 C2H4 + 2 C | 1.2 × 105 × exp(−108000/RT) |
18 | C9H10O2 | → | 2 CO + CH4 + 1.5 C2H4 + 3 C | 1.2 × 105 × exp(−108000/RT) |
19 | C11H12O4 | → | 4 CO + 2 CH4 + C2H4 + 3 C | 1.2 × 105 × exp(−108000/RT) |
20 | C13H22O2 | → | 2 CO + 5.5 C2H4 | 1.2 × 105 × exp(−108000/RT) |
21 | C19H34O2 | → | 2 C2H3CHO + 6.5 C2H4 | 2.2 × 106 × exp(−108000/RT) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.K.; Choi, Y.S.; Jeong, Y.W.; Han, S.Y.; Nguyen, Q.V. Simulation of the Fast Pyrolysis of Coffee Ground in a Tilted-Slide Reactor. Energies 2020, 13, 6605. https://doi.org/10.3390/en13246605
Choi SK, Choi YS, Jeong YW, Han SY, Nguyen QV. Simulation of the Fast Pyrolysis of Coffee Ground in a Tilted-Slide Reactor. Energies. 2020; 13(24):6605. https://doi.org/10.3390/en13246605
Chicago/Turabian StyleChoi, Sang Kyu, Yeon Seok Choi, Yeon Woo Jeong, So Young Han, and Quynh Van Nguyen. 2020. "Simulation of the Fast Pyrolysis of Coffee Ground in a Tilted-Slide Reactor" Energies 13, no. 24: 6605. https://doi.org/10.3390/en13246605
APA StyleChoi, S. K., Choi, Y. S., Jeong, Y. W., Han, S. Y., & Nguyen, Q. V. (2020). Simulation of the Fast Pyrolysis of Coffee Ground in a Tilted-Slide Reactor. Energies, 13(24), 6605. https://doi.org/10.3390/en13246605