A New Commerce Operation Model for Integrated Energy System Containing the Utilization of Bio-Natural Gas
Abstract
:1. Introduction
- Proposed a new commerce operation model for an IES, and an open energy market framework which contains multi-type energy transaction has been established.
- Multiple power output scenarios represent the forecast error of DRES, and the day-ahead energy markets and real-time markets are jointly cleared to alleviate the power imbalance phenomenon.
- The gas price adjustment mechanism has been applied in this model to minimize the total operation cost, which can stimulate the market players by price signals, thus optimizing the operation scheme of an IES.
2. The New Commerce Operation Model for an IES
2.1. The Composition of Integrated Energy System
2.2. The Framework of Open Energy Market
2.3. The Gas-Price Adjustment Mechanism
3. Mathematical Description of the Model
3.1. Upper-Level Problem
3.1.1. Upper-Level Model Objective Function
3.1.2. Upper-Level Model Constrains
3.2. Lower-Level Problem
3.2.1. Day-Ahead Energy Market
3.2.2. Real-Time Balancing Market
3.2.3. Bio-Natural Gas Market
4. Case Study
4.1. Basic Data
4.2. The Analysis of Gas-Price Adjustment Limits
4.3. The Analysis of Simulation Results with and without the Gas Price Adjustment Mechanism
4.4. Sensitivity Analysis of DRES Capacity
5. Conclusions and Discussions
Author Contributions
Funding
Conflicts of Interest
References
- Abdmouleh, Z.; Gastli, A.; Ben-Brahim, L.; Haouari, M.; Al-Emadi, N. Review of optimization techniques applied for the integration of distributed generation from renewable energy sources. Renew. Energy 2017, 113, 266–280. [Google Scholar] [CrossRef]
- Odetayo, B.; MacCormack, J.; Rosehart, W.; Zareipour, H.; Seifi, A.R. Integrated planning of natural gas and electric power systems. Int. J. Electr. Power Energy Syst. 2018, 103, 593–602. [Google Scholar] [CrossRef]
- Li, J.; Ying, Y.; Lou, X.; Fan, J.; Chen, Y.; Bi, D. Integrated energy system optimization based on standardized matrix modeling method. Appl. Sci. 2018, 8, 2372. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Mu, S.; Chan, C.; Zhou, G.Y. Optimization of renewable energy penetration in regional energy system. Energy Procedia 2018, 152, 922–927. [Google Scholar] [CrossRef]
- Gargari, S.G.; Rahimi, M.; Ghaebi, H. Energy, exergy, economic and environmental analysis and optimization of a novel biogas-based multigeneration system based on Gas Turbine-Modular Helium Reactor cycle. Energy Convers. Manag. 2019, 185, 816–835. [Google Scholar] [CrossRef]
- Kang, Y.; Yang, Q.; Bartocci, P.; Wei, H.; Liu, S.S.; Wu, Z.; Zhou, H.; Yang, H.; Fantozzi, F.; Chen, H. Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials. Renew. Sustain. Energy Rev. 2020, 127, 109842. [Google Scholar] [CrossRef]
- Xue, S.; Song, J.; Wang, X.; Shang, Z.; Sheng, C.; Li, C.; Zhu, Y.; Liu, J. A systematic comparison of biogas development and related policies between China and Europe and corresponding insights. Renew. Sustain. Energy Rev. 2020, 117, 109474. [Google Scholar] [CrossRef]
- Zheng, L.; Cheng, S.; Han, Y.; Wang, M.; Xiang, Y.; Guo, J.; Cai, D.; Mang, H.-P.; Dong, T.; Li, Z.; et al. Bio-natural gas industry in China: Current status and development. Renew. Sustain. Energy Rev. 2020, 128, 109925. [Google Scholar] [CrossRef]
- Wang, P.; Li, M. Scenario analysis in the electric power industry under the implementation of the electricity market reform and a carbon policy in China. Energies 2019, 12, 2152. [Google Scholar] [CrossRef] [Green Version]
- Does Market-Based Electricity Price Affect China’s Energy Efficiency? ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0140988320302498 (accessed on 10 November 2020).
- Gaspari, M.; Lorenzoni, A.; Frías, P.; Reneses, J. Integrated Energy Services for the industrial sector: An innovative model for sustainable electricity supply. Util. Policy 2017, 45, 118–127. [Google Scholar] [CrossRef]
- Pang, Y.; He, Y.; Cai, H. Business model of distributed photovoltaic energy integrating investment and consulting services in China. J. Clean. Prod. 2019, 218, 943–965. [Google Scholar] [CrossRef]
- Wang, Y.; Lou, S.; Wu, Y.; Miao, M.; Wang, S. Operation strategy of a hybrid solar and biomass power plant in the electricity markets. Electr. Power Syst. Res. 2019, 167, 183–191. [Google Scholar] [CrossRef]
- Chen, H.; Xue, K.; Wu, Y.; Xu, G.; Jin, X.; Liu, W. Thermodynamic and economic analyses of a solar-aided biomass-fired combined heat and power system. Energy 2020, 214, 119023. [Google Scholar] [CrossRef]
- Sun, R.; Liu, T.; Chen, X.; Yao, L. A biomass-coal co-firing based bi-level optimal approach for carbon emission reduction in China. J. Clean. Prod. 2021, 278, 123318. [Google Scholar] [CrossRef]
- Wu, N.; Zhan, X.; Zhu, X.; Zhang, Z.; Lin, J.; Xie, S.; Meng, C.; Cao, L.; Wang, X.; Shah, N.; et al. Analysis of biomass polygeneration integrated energy system based on a mixed-integer nonlinear programming optimization method. J. Clean. Prod. 2020, 271, 122761. [Google Scholar] [CrossRef]
- Giarola, S.; Forte, O.; Lanzini, A.; Gandiglio, M.; Santarelli, M.; Hawkes, A. Techno-economic assessment of biogas-fed solid oxide fuel cell combined heat and power system at industrial scale. Appl. Energy 2018, 211, 689–704. [Google Scholar] [CrossRef] [Green Version]
- Bamisile, O.; Huang, Q.; Li, J.; Dagbasi, M.; Kemena, A.D.; Abid, M.; Hu, W. Modelling and performance analysis of an innovative CPVT, wind and biogas integrated comprehensive energy system: An energy and exergy approach. Energy Convers. Manag. 2020, 209, 112611. [Google Scholar] [CrossRef]
- Zhou, B.; Xu, D.; Li, C.; Chung, C.Y.; Cao, Y.; Chan, K.W.; Wu, Q. Optimal scheduling of biogas–solar–wind renewable portfolio for multicarrier energy supplies. IEEE Trans. Power Syst. 2018, 33, 6229–6239. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, T.; Bhattacharjee, A.; Samanta, H.; Bhattacharya, K.; Saha, H. Optimal design and implementation of solar PV-wind-biogas-VRFB storage integrated smart hybrid microgrid for ensuring zero loss of power supply probability. Energy Convers. Manag. 2019, 191, 102–118. [Google Scholar] [CrossRef]
- Li, C.; Yang, H.; Shahidehpour, M.; Xu, Z.; Zhou, B.; Cao, Y.; Zeng, L. Optimal planning of islanded integrated energy system with solar-biogas energy supply. IEEE Trans. Sustain. Energy 2020, 11, 2437–2448. [Google Scholar] [CrossRef]
- Lauer, M.; Leprich, U.; Thrän, D. Economic assessment of flexible power generation from biogas plants in Germany’s future electricity system. Renew. Energy 2020, 146, 1471–1485. [Google Scholar] [CrossRef]
- Bedoić, R.; Jurić, F.; Ćosić, B.; Pukšec, T.; Čuček, L.; Duić, N. Beyond energy crops and subsidised electricity—A study on sustainable biogas production and utilisation in advanced energy markets. Energy 2020, 201, 117651. [Google Scholar] [CrossRef]
- Lauven, L.P.; Geldermann, J.; Desideri, U. Estimating the revenue potential of flexible biogas plants in the power sector. Energy Policy 2019, 128, 402–410. [Google Scholar] [CrossRef]
DRES Penetration Rate/% | 40% | 50% | 60% | |||
---|---|---|---|---|---|---|
Operation Model | Case 1 | Case 2 | Case 1 | Case 2 | Case 1 | Case 2 |
Total Operation Cost/€ | 62,595.8 | 62,609.1 | 61,266.9 | 61,592.3 | 60,122.3 | 61,546 |
The Cost in DA market/€ | 62,639 | 62,612.5 | 61,291.9 | 61,245.3 | 60,103.7 | 60,026.2 |
The Cost in RT market/€ | −43.3 | −3.4 | −24.9 | 34.6 | 8.5 | 63.3 |
DRES curtailment penalty cost/€ | 0 | 0 | 0 | 312.4 | 10.1 | 1456.5 |
BNG supply cost/€ | 48,454.2 | 48,452.6 | 47,530 | 47,476.3 | 46,794.4 | 46,532.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Lou, S.; Wu, Y.; Wu, Y.; Wen, X. A New Commerce Operation Model for Integrated Energy System Containing the Utilization of Bio-Natural Gas. Energies 2020, 13, 6607. https://doi.org/10.3390/en13246607
Zhang G, Lou S, Wu Y, Wu Y, Wen X. A New Commerce Operation Model for Integrated Energy System Containing the Utilization of Bio-Natural Gas. Energies. 2020; 13(24):6607. https://doi.org/10.3390/en13246607
Chicago/Turabian StyleZhang, Guoliang, Suhua Lou, Yaowu Wu, Yang Wu, and Xiangfeng Wen. 2020. "A New Commerce Operation Model for Integrated Energy System Containing the Utilization of Bio-Natural Gas" Energies 13, no. 24: 6607. https://doi.org/10.3390/en13246607
APA StyleZhang, G., Lou, S., Wu, Y., Wu, Y., & Wen, X. (2020). A New Commerce Operation Model for Integrated Energy System Containing the Utilization of Bio-Natural Gas. Energies, 13(24), 6607. https://doi.org/10.3390/en13246607