Prediction of Permeability Using Group Method of Data Handling (GMDH) Neural Network from Well Log Data
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Descriptions
2.2. Group Method of Data Handling (GMDH) Model
- Step 1.
- The well log and core permeability data for the training and predicting were standardized. The uses of the training data are to estimate the weights of GMDH neurons whereas the predicting data are used to evaluate the network architectures.
- Step 2.
- Evaluate the regression polynomial by means of Equation (4), for individually couple of input variables which are xi and xj with the corresponding output y of training data set that fits the rely on remarks M in the training data set
- Step 3.
- The polynomial for entire observations of N for an individual regression is computed. New observations N are stored into different matrix Y. By using a similar method, the new columns of Y are computed. Matrix Y can be understood as novel enhanced variables with improved predictability than those variables from the original generation of x1, x2, x3,....., xM.
- Step 4.
- The fourth step is screening out the last variables which are effective.
- Step 5.
- According to the increasing of regularity criterion, order the columns of Y, then choose the Y columns which satisfies regularity criterion <S where S is a minimum residual value prescribed by the user in order to substitute that previous original column of matrix X.
- Step 6.
- Steps 1 to 5 are repeated until the final estimates are automatically determined when the least error is achieved based on the metaheuristic and self-organizing nature of GMDH algorithm. Plot and compare the smallest estimated error calculated in each generation with the smallest estimating error of the current generation until it starts to give an increasing trend. All of the steps have been summarized in the flow-chart shown in Figure 5.
3. Results and Discussion
3.1. Performance Indicators
3.2. GMDH Model Development
3.3. Comparing with ANN
3.4. Sensitivity Analysis for the GMDH Model
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Chehrazi, A.; Rezaee, R. A systematic method for permeability prediction, a Petro-Facies approach. J. Pet. Sci. Eng. 2012, 82, 1–16. [Google Scholar] [CrossRef]
- Gholami, R.; Moradzadeh, A.; Maleki, S.; Amiri, S.; Hanachi, J. Applications of artificial intelligence methods in prediction of permeability in hydrocarbon reservoirs. J. Pet. Sci. Eng. 2014, 122, 643–656. [Google Scholar] [CrossRef]
- Moussa, T.; Elkatatny, S.; Mahmoud, M.; Abdulraheem, A. Development of new permeability formulation from well log data using artificial intelligence approaches. J. Energy Resour. Technol. 2018, 140, 072903–072908. [Google Scholar] [CrossRef]
- Mohaghegh, S.; Balan, B.; Ameri, S. Permeability determination from well log data. SPE Form. Eval. 1997, 12, 170–174. [Google Scholar] [CrossRef]
- Rafik, B.; Kamel, B. Prediction of permeability and porosity from well log data using the nonparametric regression with multivariate analysis and neural network, Hassi R’Mel Field, Algeria. Egypt J. Pet. 2017, 26, 763–778. [Google Scholar] [CrossRef] [Green Version]
- Anifowose, F.A.; Labadin, J.; Abdulraheem, A. Hybrid intelligent systems in petroleum reservoir characterization and modeling: The journey so far and the challenges ahead. J. Pet. Explor. Prod. Technol. 2017, 7, 251–263. [Google Scholar] [CrossRef] [Green Version]
- Elkatatny, S.; Mahmoud, M.; Tariq, Z.; Abdulraheem, A. New insights into the prediction of heterogeneous carbonate reservoir permeability from well logs using artificial intelligence network. Neural Comput. Appl. 2018, 30, 2673–2683. [Google Scholar] [CrossRef]
- Ahmadi, M.; Saemi, M.; Asghari, K. Estimation of the reservoir permeability by petrophysical information using intelligent systems. Pet. Sci. Technol. 2008, 26, 1656–1667. [Google Scholar] [CrossRef]
- Ali Ahmadi, M.; Zendehboudi, S.; Lohi, A.; Elkamel, A.; Chatzis, I. Reservoir permeability prediction by neural networks combined with hybrid genetic algorithm and particle swarm optimization. Geophys. Prospect. 2013, 61, 582–598. [Google Scholar] [CrossRef]
- Guo, J.; Wang, H.; Guo, F.; Huang, W.; Yang, H.; Yang, K.; Xie, H. The back propagation based on the modified group method of data-handling network for oilfield production forecasting. J. Pet. Explor. Prod. Technol. 2019, 9, 1285–1293. [Google Scholar] [CrossRef]
- Samarasinghe, S. Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition; Auerbach Publications: New York, NY, USA, 2016. [Google Scholar]
- Ahmadi, M.A.; Zendehboudi, S.; Dusseault, M.B.; Chatzis, I. Evolving simple-to-use method to determine water–oil relative permeability in petroleum reservoirs. Petroleum 2016, 2, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Paul, A.; Bhowmik, S.; Panua, R.; Debroy, D. Artificial Neural Network-Based Prediction of Performances-Exhaust Emissions of Diesohol Piloted Dual Fuel Diesel Engine Under Varying Compressed Natural Gas Flowrates. J. Energy Resour. Technol. 2018, 140, 112201. [Google Scholar] [CrossRef]
- Chen, W.; Wilson, J.; Tyree, S.; Weinberger, K.; Chen, Y. Compressing neural networks with the hashing trick. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 2285–2294. [Google Scholar]
- Iturrarán-Viveros, U.; Parra, J.O. Artificial neural networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well-log data. J. Appl. Geophys. 2014, 107, 45–54. [Google Scholar] [CrossRef]
- Singh, S.; Kanli, A.I.; Sevgen, S. A general approach for porosity estimation using artificial neural network method: A case study from Kansas gas field. Studia Geophys. Geod. 2016, 60, 130–140. [Google Scholar] [CrossRef]
- Ebtehaj, I.; Bonakdari, H.; Khoshbin, F.; Bong, C.H.J.; Ghani, A.B. Development of group method of data handling based on genetic algorithm to predict incipient motion in rigid rectangular storm water channel. Sci. Iran. Trans. A Civ. Eng. 2017, 24, 1000–1009. [Google Scholar] [CrossRef] [Green Version]
- Baziar, S.; Tadayoni, M.; Nabi-Bidhendi, M.; Khalili, M. Prediction of permeability in a tight gas reservoir by using three soft computing approaches: A comparative study. J. Nat. Gas Sci. Eng. 2014, 21, 718–724. [Google Scholar] [CrossRef]
- Bhatt, A.; Helle, H.B. Committee neural networks for porosity and permeability prediction from well logs. Geophys. Prospect. 2002, 50, 645–660. [Google Scholar] [CrossRef]
- Karimpouli, S.; Fathianpour, N.; Roohi, J. A new approach to improve neural networks’ algorithm in permeability prediction of petroleum reservoirs using supervised committee machine neural network (SCMNN). J. Pet. Sci. Eng. 2010, 73, 227–232. [Google Scholar] [CrossRef]
- Lim, J.-S.; Kim, J. Reservoir porosity and permeability estimation from well logs using fuzzy logic and neural networks. In Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, Australia, 18–20 October 2004. [Google Scholar]
- Najafzadeh, M.; Barani, G.-A.; Hessami-Kermani, M.-R. Evaluation of GMDH networks for prediction of local scour depth at bridge abutments in coarse sediments with thinly armored beds. Ocean Eng. 2015, 104, 387–396. [Google Scholar] [CrossRef]
- Porkhial, S.; Salehpour, M.; Ashraf, H.; Jamali, A. Modeling and prediction of geothermal reservoir temperature behavior using evolutionary design of neural networks. Geothermics 2015, 53, 320–327. [Google Scholar] [CrossRef]
- Shaghaghi, S.; Bonakdari, H.; Gholami, A.; Ebtehaj, I.; Zeinolabedini, M. Comparative analysis of GMDH neural network based on genetic algorithm and particle swarm optimization in stable channel design. Appl. Math. Comput. 2017, 313, 271–286. [Google Scholar] [CrossRef]
- Seliverstova, A.V.; Pavlova, D.A.; Tonoyan, S.A.; Gapanyuk, Y.E. The Time Series Forecasting of the Company’s Electric Power Consumption. In Proceedings of the International Conference on Neuroinformatics, Moscow, Russia, 8–12 October 2018; pp. 210–215. [Google Scholar]
- Jacob, T.; Usman, U.A.; Bemdoo, S.; Susan, A.A. Short-term electrical energy consumption forecasting using GMDH-type neural network. J. Electr. Electron. Eng. 2015, 3, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Park, J.; Kim, S. A New Input Selection Algorithm Using the Group Method of Data Handling and Bootstrap Method for Support Vector Regression Based Hourly Load Forecasting. Energies 2018, 11, 2870. [Google Scholar] [CrossRef] [Green Version]
- Ayoub, M.; Almansour, A.; Hassan, A. A Novel Formula for Estimating Oil Compressibility Below Bubble Point Pressure Using Group Method of Data Handling: A Comparative Approach. In Proceedings of the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Bali, Indonesia, 29–31 October 2019. [Google Scholar]
- Ma, S.-W.; Kou, C.-H.; Chen, L.; Wang, A.-P. Application of Group Method of Data Handling to Strean-Way Transition. In Proceedings of the 2009 International Joint Conference on Artificial Intelligence, Pasadena, CA, USA, 11–17 July 2009; pp. 301–304. [Google Scholar]
- Menad, N.A.; Noureddine, Z.; Hemmati-Sarapardeh, A.; Shamshirband, S.; Mosavi, A.; Chau, K.-w. Modeling temperature dependency of oil-water relative permeability in thermal enhanced oil recovery processes using group method of data handling and gene expression programming. Eng. Appl. Comput. Fluid Mech. 2019, 13, 724–743. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Asante-Okyere, S.; Yevenyo Ziggah, Y.; Wang, L.; Zhu, X. Group Method of Data Handling (GMDH) Lithology Identification Based on Wavelet Analysis and Dimensionality Reduction as Well Log Data Pre-Processing Techniques. Energies 2019, 12, 1509. [Google Scholar] [CrossRef] [Green Version]
- Teng, G.; Xiao, J.; He, Y.; Zheng, T.; He, C. Use of group method of data handling for transport energy demand modeling. Energy Sci. Eng. 2017, 5, 302–317. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Lee, S.; Nguyen-Xuan, H.; Lee, J. A novel analysis-prediction approach for geometrically nonlinear problems using group method of data handling. Comput. Methods Appl. Mech. Eng. 2019, 354, 506–526. [Google Scholar] [CrossRef]
- Safari, M.J.S.; Ebtehaj, I.; Bonakdari, H.; Es-haghi, M.S. Sediment transport modeling in rigid boundary open channels using generalize structure of group method of data handling. J. Hydrol. 2019, 577, 123951. [Google Scholar] [CrossRef]
- Rostami, A.; Hemmati-Sarapardeh, A.; Karkevandi-Talkhooncheh, A.; Husein, M.M.; Shamshirband, S.; Rabczuk, T. Modeling heat capacity of ionic liquids using group method of data handling: A hybrid and structure-based approach. Int. J. Heat Mass Transf. 2019, 129, 7–17. [Google Scholar] [CrossRef]
- Lambert, R.S.; Lemke, F.; Kucherenko, S.S.; Song, S.; Shah, N. Global sensitivity analysis using sparse high dimensional model representations generated by the group method of data handling. Math. Comput. Simul. 2016, 128, 42–54. [Google Scholar] [CrossRef]
- Ivakhnenko, A. Heuristic self-organization in problems of engineering cybernetics. Automatica 1970, 6, 207–219. [Google Scholar] [CrossRef]
- Ivakhnenko, A.G. Polynomial theory of complex systems. IEEE Trans. Syst. Man Cybern. 1971, 364–378. [Google Scholar] [CrossRef] [Green Version]
- Ivakhnenko, G. Short-Term Process Forecasting by Analogues Complexing GMDH Algorithm. In Proceedings of the 2nd Int. Conf. on Inductive Modeling, Kyiv, Ukraine, 15–19 September 2008; pp. 241–245. [Google Scholar]
- Park, H.-S.; Park, B.-J.; Kim, H.-K.; Oh, S.-K. Self-organizing polynomial neural networks based on genetically optimized multi-layer perceptron architecture. Int. J. Control Autom. Syst. 2004, 2, 423–434. [Google Scholar]
- Saemi, M.; Ahmadi, M. Integration of genetic algorithm and a coactive neuro-fuzzy inference system for permeability prediction from well logs data. Transp. Porous Media 2008, 71, 273–288. [Google Scholar] [CrossRef]
- Committee, I.U.M. East African Rift System: Upper Mantle Committee-UNESCO Seminar. Master’s Thesis, University College, Nairobi, Kenya, 1965. [Google Scholar]
- Tiberi, C.; Ebinger, C.; Ballu, V.; Stuart, G.; Oluma, B. Inverse models of gravity data from the Red Sea-Aden-East African rifts triple junction zone. Geophys. J. Int. 2005, 163, 775–787. [Google Scholar] [CrossRef] [Green Version]
- Barberi, F.; Varet, J. The Afar rift junction. In Petrology and Geochemistry of Continental Rifts; Springer: Berlin/Heidelberg, Germany, 1978; pp. 55–69. [Google Scholar]
- Mueller, J.-A.; Ivachnenko, A.; Lemke, F. GMDH algorithms for complex systems modelling. Math. Comput. Model. Dyn. Syst. 1998, 4, 275–316. [Google Scholar] [CrossRef]
- Howland, J.C.; Voss, M.S. Natural gas prediction using the group method of data handling. In Proceedings of the 7th International Conference on Artificial Intelligence and Soft Computing, Banff, AB, Canada, 27–30 June 2004. [Google Scholar]
- Abdel-Aal, R. Abductive networks: A new modeling tool for the oil and gas industry. In Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition, Melbourne, Australia, 8–10 October 2002. [Google Scholar]
- Madala, H.R.; Ivakhnenko, A.G. Inductive Learning Algorithms for Complex Systems Modeling; CRC press: Boca Raton, FL, USA, 1994; Volume 368. [Google Scholar]
- Guo, J.; Huang, W.; Mao, Q.; Wang, X.; Wang, X.; Song, T. Modified GMDH networks for oilfield production prediction. Geosyst. Eng. 2018, 21, 217–225. [Google Scholar] [CrossRef]
- Asante-Okyere, S.; Shen, C.; Yevenyo Ziggah, Y.; Moses Rulegeya, M.; Zhu, X. Investigating the Predictive Performance of Gaussian Process Regression in Evaluating Reservoir Porosity and Permeability. Energies 2018, 11, 3261. [Google Scholar] [CrossRef] [Green Version]
- Semenov, A.A.; Oshmarin, R.A.; Driller, A.; Butakova, A. Application of Group Method Of Data Handling For Geological Modeling of Vankor Field. In Proceedings of the North Africa Technical Conference and Exhibition, Cairo, Egypt, 14–17 February 2010. [Google Scholar]
Wells | RHOZ | RLA1 | RLA5 | SGR | TNPH | VSH | |
---|---|---|---|---|---|---|---|
Mpyo 1 | Max | 3.4864 | 34.759 | 78.1588 | 72.7292 | 1.0351 | 0.9113 |
Min | 1.9273 | 0.0867 | 0.0558 | 13.6988 | 0.2521 | 0.0142 | |
Average | 2.1685 | 8.021 | 11.4722 | 42.1452 | 0.3757 | 0.3094 | |
STDEV | 0.1284 | 5.7368 | 11.4411 | 15.5787 | 0.1017 | 0.2408 | |
Mpyo 2 | Max | 4.097 | 139.3818 | 125.6737 | 74.8748 | 1.6155 | 0.9121 |
Min | 1.6833 | 0.0375 | 0.0277 | 16.2123 | 0.1231 | 0.0198 | |
Average | 2.481 | 4.6441 | 4.9643 | 44.5679 | 0.7406 | 0.3462 | |
STDEV | 0.5874 | 17.2156 | 17.9904 | 11.2071 | 0.3482 | 0.219 | |
Mpyo 3 | Max | 3.4877 | 61.7264 | 83.4196 | 60.8802 | 1.0336 | 0.8132 |
Min | 1.8848 | 0.0084 | 0.0057 | 8.4259 | 0.1788 | 0.0016 | |
Average | 2.2449 | 6.0888 | 7.516 | 34.0213 | 0.3347 | 0.2184 | |
STDEV | 0.1794 | 5.1768 | 7.2833 | 10.8559 | 0.1288 | 0.1515 |
Hidden Neuron | R | RMSE | ||
---|---|---|---|---|
Train | Test | Train | Test | |
1 | 0.618 | 0.618 | 0.416 | 0.428 |
2 | 0.985 | 0.822 | 0.025 | 0.206 |
3 | 0.982 | 0.823 | 0.031 | 0.205 |
4 | 0.992 | 0.611 | 0.02 | 0.445 |
5 | 0.983 | 0.813 | 0.032 | 0.214 |
6 | 0.978 | 0.824 | 0.034 | 0.209 |
7 | 0.976 | 0.822 | 0.037 | 0.208 |
Spread Parameter | R | RMSE | ||
---|---|---|---|---|
Train | Test | Train | Test | |
0.3 | 0.973 | 0.68 | 0.034 | 0.407 |
0.5 | 0.97 | 0.696 | 0.034 | 0.41 |
0.7 | 0.981 | 0.809 | 0.03 | 0.211 |
0.9 | 0.982 | 0.821 | 0.03 | 0.208 |
1 | 0.988 | 0.822 | 0.026 | 0.206 |
Training | Predicting | ||||
---|---|---|---|---|---|
Model | R | RMSE | R | RMSE | Computational Time |
GMDH | 0.989 | 0.0241 | 0.868 | 0.204 | 1.44 s |
BPNN | 0.982 | 0.0313 | 0.823 | 0.2053 | 13.86 s |
RBFNN | 0.988 | 0.026 | 0.822 | 0.206 | 6.45 s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathew Nkurlu, B.; Shen, C.; Asante-Okyere, S.; Mulashani, A.K.; Chungu, J.; Wang, L. Prediction of Permeability Using Group Method of Data Handling (GMDH) Neural Network from Well Log Data. Energies 2020, 13, 551. https://doi.org/10.3390/en13030551
Mathew Nkurlu B, Shen C, Asante-Okyere S, Mulashani AK, Chungu J, Wang L. Prediction of Permeability Using Group Method of Data Handling (GMDH) Neural Network from Well Log Data. Energies. 2020; 13(3):551. https://doi.org/10.3390/en13030551
Chicago/Turabian StyleMathew Nkurlu, Baraka, Chuanbo Shen, Solomon Asante-Okyere, Alvin K. Mulashani, Jacqueline Chungu, and Liang Wang. 2020. "Prediction of Permeability Using Group Method of Data Handling (GMDH) Neural Network from Well Log Data" Energies 13, no. 3: 551. https://doi.org/10.3390/en13030551
APA StyleMathew Nkurlu, B., Shen, C., Asante-Okyere, S., Mulashani, A. K., Chungu, J., & Wang, L. (2020). Prediction of Permeability Using Group Method of Data Handling (GMDH) Neural Network from Well Log Data. Energies, 13(3), 551. https://doi.org/10.3390/en13030551