Surface Discharges and Flashover Modelling of Solid Insulators in Gases
Abstract
:1. Introduction
2. Review of Surface Discharges and Flashover Models in Gases
- C is the equivalent capacitance,
- A, B and D are parameters that depend on the geometry and the material of insulator, the kind of the discharge and the experimental conditions (gas, pressure, temperature, humidity, electrodes shape, voltage waveform…), respectively. Terms a, b and d are empirical parameters the values of which vary in the range 0.2–0.44.
3. Principal of Circuit Model
3.1. Parameters of the Circuit
3.2. Thermal Conductivity and Discharge Resistance
4. Application
4.1. Air at Normal Atmospheric Conditions
4.2. SF6 at Variable Pressure
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Slama, M.E.A.; Beroual, A.; Girodet, A.; Vinson, P. Characterization and Mathematical Modelling of Surface Solid Insulator in Air. In Proceedings of the International Symposium on High Voltage Engineering, Plzen, Czech Republic, 24–28 August 2015. [Google Scholar]
- Al-Arainy, A.B.; Malik, N. Experiments in High Voltage Engineering King, Saud University; Academic Publishing and Press: Riyadh, Saudi Arabia, 2014. [Google Scholar]
- Beroual, A. Creeping Discharges at Liquid/solid and Gas/Solid Interfaces: Analogies and Involving Mechanisms. In Proceedings of the IEEE 20th International Conference on Dielectric Liquids (ICDL), Roma, Italy, 23–27 June 2019. [Google Scholar]
- Toepler, M. Über die physikalischen Grundgesetze der in der Isolatorentechnik auftretenden elektrischen Gleiterscheinungen. Archiv Elektrotechnik 1921, 10, 157–185. [Google Scholar] [CrossRef]
- Cookson, A.H. Review of high-voltage gas breakdown and insulators in compressed gas. IET 1981, 128, 303–312. [Google Scholar] [CrossRef]
- Sudarshan, T.S.; Dougal, R. Mechanisms of surface flashover along solid dielectrics in compressed gases: A Review. IEEE Trans. Electr. Insul. 1986, 21, 727–746. [Google Scholar] [CrossRef]
- Hayakawa, N.; Ishida, Y.; Nishiguchi, H.; Hikita, M.; Okubo, H. Mechanism of impulse creepage discharge propagation on charged dielectric surface in SF6 gas. IEEJ Trans. Power Energy 1996, 116-B, 600–606. [Google Scholar] [CrossRef] [Green Version]
- Okubo, H.; Kanegami, M.; Hikita, M.; Kito, Y. Creepage Discharge Propagation in Air and SF6 Gas Influenced by Surface Charge on Solid Dielectrics. IEEE Trans. Dielectr. Electr. Insul. 2004, 1, 204–304. [Google Scholar]
- Tenbohlen, S.; Schröder, G. Discharge Development over Surfaces in SF6. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 241–246. [Google Scholar] [CrossRef]
- Beroual, A.; Coulibaly, M.-L.; Aitken, O.; Girodet, A. Investigation on creeping discharges propagating over epoxy resin and glass insulators in presence of different gases and mixtures. Eur. Phys. J. Appl. Phys. 2011, 56, 30802–30809. [Google Scholar] [CrossRef] [Green Version]
- Beroual, A.; Coulibaly, M.-L.; Aitken, O.; Girodet, A. Effect of micro-fillers in PTFE insulators on the characteristics of surface discharges in presence of SF6, CO2 and SF6 –CO2 mixture. IET Gener. Transm. Distrib. 2012, 6, 951–957. [Google Scholar] [CrossRef]
- Slama, M.E.A.; Beroual, A.; Girodet, A.; Vinson, P. Barrier effect on Surface Breakdown of Epoxy Solid Dielectric in SF6 with Various Pressures. In Proceedings of the Conference on Electrical Insulation and Dielectrics Phenomena, Toronto, ON, Canada, 23 October 2016. CEIDP 2016. [Google Scholar]
- Slama, M.E.A.; Beroual, A.; Girodet, A.; Vinson, P. Creeping Discharge and Flashover of Solid Dielectric in Air at Atmospheric Pressure: Experiment and Modelling. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 2949–2956. [Google Scholar] [CrossRef] [Green Version]
- Douar, M.A.; Beroual, A.; Souche, X. Creeping discharges features propagating in air at atmospheric pressure on various materials under positive lightning impulse voltage—Part 2: Modelling and computation of discharges’ parameters. IET Gener. Transm. Distrib. 2018, 6, 1429–1437. [Google Scholar] [CrossRef]
- Laghari, R. Spacer Flashover in Compressed Gases. IEEE Trans. Electr. Insul. 1985, EI-20, 83–92. [Google Scholar] [CrossRef]
- Hama, H.; Inami, K.; Yoshimura, M.; Nakanishi, K. Estimation of Breakdown Voltage of Surface Flashover Initiated from Triple Junction in SF6 Gas. IEEJ 1996, 116. [Google Scholar] [CrossRef]
- Waters, R.T.; Haddad, A.; Griffiths, H.; Harid, N.; Sarkar, P. Partial-arc and Spark Models of the Flashover of Lightly Polluted Insulators. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 417–424. [Google Scholar] [CrossRef]
- Kessler, J.E.M. Isoliervermögen Hybrider Isoliersysteme in Gasisolierten Metallgekapselten Schaltanlagen (GIS). Ph.D. Thesis, Technische Universität München, Munich, Germany, 2011. [Google Scholar]
- Zavattoni, L. Conduction phenomena through gas and insulating solids in HVDC GIS, and consequences on electric field distribution. Ph.D. Thesis, University of Grenoble, Grenoble, France, 2014. [Google Scholar]
- Dhahbi-Megriche, N.; Beroual, A.; Krähenbühl, L. A New Proposal Model for Polluted Insulators Flashover. J. Phys. D Appl. Phys. 1997, 30, 889–894. [Google Scholar] [CrossRef]
- Fridman, A.; Nester, S.; Kennedy, L.A.; Saveliev, A.; Mutaf-Yardimci, O. Gliding arc discharge. Prog. Energy Combust. Sci. 1999, 25, 211–231. [Google Scholar] [CrossRef]
- Fridman, A. Plasma Chemistry; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- McElhannon, W.; McLaughlim, E. Thermal Conductivity of Simple Dense Fluid Mixtures. In Proceedings of the Fourteenth International Conference on Thermal Conductivity, Storrs, CT, USA, 2–4 June 1975; Klemens, P.G., Clen, T.K., Eds.; [Google Scholar]
- Slama, M.E.A.; Beroual, A.; Hadi, H. Analytical Computation of Discharge Characteristic Constants and Critical Parameters of Flashover of Polluted Insulators. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1764–1771. [Google Scholar] [CrossRef]
- Zhong, L.; Rong, M.; Wang, X.; Wu, J.; Han, G.; Lu, Y.; Yang, A.; Wu, Y. Compositions, thermodynamic properties, and transport coefficients of high temperature C5F10O mixed with CO2 and O2 as substitutes for SF6 to reduce global warming potential. AIP Adv. 2017, 7, 075003. [Google Scholar] [CrossRef] [Green Version]
- Assael, M.J.; Koini, I.A.; Antoniadis, K.D.; Huber, M.L.; Abdulagatov, I.M.; Perkins, R.A. Reference Correlation of the Thermal Conductivity of Sulfur Hexafluoride from the Triple Point to 1000 K and up to 150 MPa. J. Phys. Chem. Ref. Data 2012, 41, 023104. [Google Scholar] [CrossRef] [Green Version]
- Niemeyer, L.; Pinnekamp, F. Leader discharges in SF6. J. Phys. D: Appl. Phys. 1983, 16, 1031–1045. [Google Scholar] [CrossRef]
- Wiegart, N.; Niemeyer, L.; Pinnekamp, F.; Boeck, W.; Kindersberger, J.; Morrow, R.; Zaengl, W.; Zwicky, I.; Gallimberti, M.; Boggs, S.A. Inhomogeneous Field Breakdown in GIS—The Prediction of Breakdown Probabilities and Voltages: Parts I, II, and III. IEEE Trans. Power Deliv. 1988, 3, 923–946. [Google Scholar] [CrossRef]
- Moukengué lmano, A.; Feser, K. Flashover behavior of conducting particle on the spacer surface in compressed N2, 90%N2+10%SF6 and SF6 under lightning impulse stress. In Proceedings of the International Symposium on Electrical Insulation (ISEI 2000), Anaheim, CA, USA, 2–5 April 2000. [Google Scholar]
- Ianovici et, M.; Morf, J.-J. Compatibilité Électromagnétique; Presses Polytechniques et Universitaires Romandes: Lausanne, Suisse, 1979. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slama, M.E.A.; Beroual, A.; Haddad, A. Surface Discharges and Flashover Modelling of Solid Insulators in Gases. Energies 2020, 13, 591. https://doi.org/10.3390/en13030591
Slama MEA, Beroual A, Haddad A. Surface Discharges and Flashover Modelling of Solid Insulators in Gases. Energies. 2020; 13(3):591. https://doi.org/10.3390/en13030591
Chicago/Turabian StyleSlama, Mohammed El Amine, Abderrahmane Beroual, and Abderrahmane (Manu) Haddad. 2020. "Surface Discharges and Flashover Modelling of Solid Insulators in Gases" Energies 13, no. 3: 591. https://doi.org/10.3390/en13030591
APA StyleSlama, M. E. A., Beroual, A., & Haddad, A. (2020). Surface Discharges and Flashover Modelling of Solid Insulators in Gases. Energies, 13(3), 591. https://doi.org/10.3390/en13030591