Experimental, Numerical and Application Analysis of Hydrokinetic Turbine Performance with Fixed Rotating Blades
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. The Mathematical Model
2.3. System Matlab/Simulink Model
3. Results
3.1. Experimental Results
3.2. Simulink Results
3.3. Cost Analysis Results
4. Conclusions
- The experimental setup produced in this study showed that, a clean and renewable energy conversion system that can compete with solar energy conversion systems in terms of price, has electrical load-frequency stability can be produced especially for the small settlements which are not suitable for water accumulation.
- Numerical analyses were performed by MATLAB/Simulink. Fuzzy logic circuits offer analysis data in a good agreement with experimental results.
- The efficiency parameter of the hydrokinetic turbine is coefficient of power and fixed rotating blades rises this parameter up to 0.4.
- A renewable energy system that provides approximately 250 W energy will be enough for the electricity consumption of a village house.
- It is calculated that the system to be established on a river with a water flow rate of 30 m3/h will meet the investment cost in 11–15 years.
Author Contributions
Funding
Conflicts of Interest
References
- Fernandes, A.C.; Rostami, A.B. Hydrokinetic energy harvesting by an innovative vertical axis current turbine. Renew. Energy 2015, 81, 694–706. [Google Scholar] [CrossRef]
- Laws, N.D.; Epps, B.P. Hydrokinetic energy conversion: Technology, research, and outlook. Renew. Sustain. Energy Rev. 2016, 57, 1245–1259. [Google Scholar] [CrossRef] [Green Version]
- Van Els, R.H.; Junior, A.C.P.B. The brazilian experience with hydrokinetic turbines. Energy Procedia 2015, 75, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Vermaak, H.J.; Kusakana, K.; Koko, S.P. Status of micro-hydrokinetic river technology in rural applications: A review of literature. Renew. Sustain. Energy Rev. 2014, 29, 625–633. [Google Scholar] [CrossRef]
- Güney, M.S.; Kaygusuz, K. Hydrokinetic energy conversion systems: A technology status review. Renew. Sustain. Energy Rev. 2010, 14, 2996–3004. [Google Scholar] [CrossRef]
- Lopes, J.J.A.; Vaz, J.R.P.; Mesquita, A.L.A.; Mesquita, A.L.A.; Blanco, C.J.C. An approach for the dynamic behavior of hydrokinetic turbines. Energy Procedia 2015, 75, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Nunes, M.M.; Mendes, R.C.F.; Oliveira, T.F.; Junior, A.C.P.B. An experimental study on the diffuser-enhanced propeller hydrokinetic turbines. Renew. Energy 2019, 133, 840–848. [Google Scholar] [CrossRef]
- Riglin, J.; Carter, F.; Oblas, N.; Schleicher, W.C.; Daskiran, C.; Oztekin, A. Experimental and numerical characterization of a full-scale portable hydrokinetic turbine prototype for river applications. Renew. Energy 2016, 99, 772–783. [Google Scholar] [CrossRef]
- Guney, S.M.; Guner, F.; Altinkok, A.; Guler, B. Hydrokinetic technologies and application. Acta Tech. Corviniensis–Bull. Eng. 2018, 9, 63. [Google Scholar]
- Vásquez, M.; Oliveira, T.F.; Junior, A.C.P.B. On the electromechanical behavior of hydrokinetic turbines. Energy Convers. Manag. 2016, 115, 60–70. [Google Scholar] [CrossRef]
- Khan, M.J.; Bhuyan, G.; Iqbal, M.T.; Quaicoe, J.E. Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Appl. Energy 2009, 86, 1823–1835. [Google Scholar] [CrossRef]
- Guney, M.S. Evaluation and measures to increase performance coefficient of hydrokinetic turbines. Renew. Sustain. Energy Rev. 2011, 15, 3669–3675. [Google Scholar] [CrossRef]
- Yuksel, I. Renewable energy status of electricity generation and future prospect hydropower in turkey. Renew. Energy 2013, 50, 1037–1043. [Google Scholar] [CrossRef]
- Ladokun, L.L.; Sule, B.F.; Ajao, K.R.; Adeogun, A.G. Resource assessment and feasibility study for the generation of hydrokinetic power in the tailwaters of selected hydropower stations in nigeria. Water Sci. 2019, 32, 338–354. [Google Scholar] [CrossRef] [Green Version]
- Benelghali, S.; Benbouzid, M.E.H.; Charpentier, J.F.; Ahmed-Ali, T.; Munteanu, I. Experimental validation of a marine current turbine simulator: Application to a permanent magnet synchronous generator-based system second-order sliding mode control. IEEE Trans. Ind. Electron. 2011, 58, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Eris, E.; Agiralioglu, N. Streamflow map of the eastern black sea region, turkey. Sci. Iran. 2017, 25, 1048–1056. [Google Scholar] [CrossRef] [Green Version]
- Baser, V. Yaylalardaki arazi kullanım değişiminin coğrafi bilgi sistemi İle analizi: Giresun örneği. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 2019, 8, 167–175. [Google Scholar] [CrossRef]
- Baser, V.; Biyik, C. The problems and resolution approaches to land management in the coastal and maritime zones of turkey. Ocean Coast. Manag. 2016, 119, 30–37. [Google Scholar] [CrossRef]
- Baser, V.; Biyik, C. Coastal and marine zone legislation within the concept of land management in turkey. Surv. Rev. 2018, 51, 502–513. [Google Scholar] [CrossRef]
- Tampier, G.; Troncoso, C.; Zilic, F. Numerical analysis of a diffuser-augmented hydrokinetic turbine. Ocean Eng. 2017, 145, 138–147. [Google Scholar] [CrossRef]
- Laß, A.; Schilling, M.; Kumar, J.; Wurm, F.-H. Rotor dynamic analysis of a tidal turbine considering fluid–structure interaction under shear flow and waves. Int. J. Nav. Archit. Ocean Eng. 2019, 11, 154–164. [Google Scholar] [CrossRef]
- Yeo, H.; Seok, W.; Shin, S.; Huh, Y.C.; Jung, B.C.; Myung, C.-S.; Rhee, S.H. Computational analysis of the performance of a vertical axis turbine in a water pipe. Energies 2019, 12. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Borazjani, I.; Colby, J.A.; Sotiropoulos, F. Numerical simulation of 3d flow past a real-life marine hydrokinetic turbine. Adv. Water Resour. 2012, 39, 33–43. [Google Scholar] [CrossRef]
- Tescione, G.; Ferreira, C.J.S.; van Bussel, G.J.W. Analysis of a free vortex wake model for the study of the rotor and near wake flow of a vertical axis wind turbine. Renew. Energy 2016, 87, 552–563. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, C.; Li, Y.; Li, L.; Deng, R.; Jiang, D. Hydrodynamic performance analysis of the vertical axis twin-rotor tidal current turbine. Water 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Hantoro, R.; Utama, I.K.A.P.; Arief, I.S.; Ismail, A.; Manggala, S.W. Innovation in vertical axis hydrokinetic turbine–straight blade cascaded (vaht-sbc) design and testing for low current speed power generation. J. Phys. Conf. Ser. 2018, 1022. [Google Scholar] [CrossRef]
- Birjandi, A.H.; Bibeau, E.L.; Chatoorgoon, V.; Kumar, A. Power measurement of hydrokinetic turbines with free-surface and blockage effect. Ocean Eng. 2013, 69, 9–17. [Google Scholar] [CrossRef]
- Kamal, T.P.B.; Ismail, A.R. A comparative study on river hydrokinetic turbines blade. IJERA 2015, 5, 1–10. [Google Scholar]
- Tjiu, W.; Marnoto, T.; Mat, S.; Ruslan, M.H.; Sopian, K. Darrieus vertical axis wind turbine for power generation i: Assessment of darrieus vawt configurations. Renew. Energy 2015, 75, 50–67. [Google Scholar] [CrossRef]
- Zadeh, A.L. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. 1973, 1, 28–44. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Chen, Z.; Cheng, X.; Wang, Y.; Amankwa, A.R.; Xu, J. Design and ballistic penetration of the ceramic composite armor. Compos. Part B Eng. 2016, 84, 33–40. [Google Scholar] [CrossRef]
- Zenk, H. Comparison of the Performance of Photovoltaic Power Generation-Consumption System with Push-Pull Converter under the Effect of Five Different Types of Controllers. Int. J. Photoenergy 2019, 2019, 1–15. [Google Scholar] [CrossRef]
- Tchakoua, P.; Wamkeue, R.; Ouhrouche, M.; Tameghe, T.; Ekemb, G. A new approach for modeling darrieus-type vertical axis wind turbine rotors using electrical equivalent circuit analogy: Basis of theoretical formulations and model development. Energies 2015, 8, 10684–10717. [Google Scholar] [CrossRef] [Green Version]
- Kolekar, N.; Banerjee, A. Performance characterization and placement of a marine hydrokinetic turbine in a tidal channel under boundary proximity and blockage effects. Appl. Energy 2015, 148, 121–133. [Google Scholar] [CrossRef]
- Asl, H.A.; Monfared, R.K.; Rad, M. Experimental investigation of blade number and design effects for a ducted wind turbine. Renew. Energy 2017, 105, 334–343. [Google Scholar] [CrossRef]
- Mahmoud, N.H.; El-Haroun, A.A.; Wahba, E.; Nasef, M.H. An experimental study on improvement of savonius rotor performance. Alex. Eng. J. 2012, 51, 19–25. [Google Scholar] [CrossRef] [Green Version]
Electric Appliances | Working Hour (h) | Power (W) | Working Day | Weekly Energy Consumption (Wh) |
---|---|---|---|---|
Refrigerator | 5 | 100 | 7 | 3500 |
Television | 4 | 90 | 7 | 2520 |
PC | 3 | 75 | 7 | 1575 |
Iron | 0.2 | 1700 | 3 | 1020 |
Owen | 1 | 1800 | 1 | 1800 |
Home Lighting | 5 | 125 | 7 | 4375 |
Washer | 1 | 800 | 1 | 800 |
Others | 1 | 1000 | 2 | 2000 |
SUM | 5690 | 17,590 |
Component | Price ($/unit) |
---|---|
Turbine | 1800 |
Battery Bank | 235 |
Battery Charger | 156 |
Inverter | 480 |
Cable | 72 |
Connector | 11 |
Consumption Limiter | 153 |
System Installation | 100 |
SUM | 2957 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guner, F.; Zenk, H. Experimental, Numerical and Application Analysis of Hydrokinetic Turbine Performance with Fixed Rotating Blades. Energies 2020, 13, 766. https://doi.org/10.3390/en13030766
Guner F, Zenk H. Experimental, Numerical and Application Analysis of Hydrokinetic Turbine Performance with Fixed Rotating Blades. Energies. 2020; 13(3):766. https://doi.org/10.3390/en13030766
Chicago/Turabian StyleGuner, Faruk, and Hilmi Zenk. 2020. "Experimental, Numerical and Application Analysis of Hydrokinetic Turbine Performance with Fixed Rotating Blades" Energies 13, no. 3: 766. https://doi.org/10.3390/en13030766
APA StyleGuner, F., & Zenk, H. (2020). Experimental, Numerical and Application Analysis of Hydrokinetic Turbine Performance with Fixed Rotating Blades. Energies, 13(3), 766. https://doi.org/10.3390/en13030766