Nonuniform Heat Transfer Model and Performance of Molten Salt Cavity Receiver
Abstract
:1. Introduction
2. Physical Model of Cavity Receiver
2.1. Nonuniform Heat Transfer Model of Cavity Receiver
2.2. Calculation Conditions
3. Basic Heat Transfer Performance and Validation
4. Heat Transfer Performance with Variable Fluid Temperature
5. Heat Transfer Performance with Variable Circumferential Temperature
6. Receiver with Variable Circumferential Temperature and Fluid Temperature
7. Conclusions and Discussions
Author Contributions
Funding
Conflicts of Interest
References
- Llamas, J.; Martín, D.B.; De Adana, R.; De Adana, M.R. Optimization of 100 MWe Parabolic-Trough Solar-Thermal Power Plants Under Regulated and Deregulated Electricity Market Conditions. Energies 2019, 12, 3973. [Google Scholar] [CrossRef] [Green Version]
- Ortega, J.I.; Burgaleta, J.I.; Téllez, F.M. Central Receiver System Solar Power Plant Using Molten Salt as Heat Transfer Fluid. J. Sol. Energy Eng. 2008, 130, 024501. [Google Scholar] [CrossRef]
- Radosevich, L.G.; Skinrood, A.C. The Power Production Operation of Solar One, the 10 MWe Solar Thermal Central Receiver Pilot Plant. J. Sol. Energy Eng. 1989, 111, 144–151. [Google Scholar] [CrossRef]
- Epstein, M.; Liebermann, D.; Rosh, M.; Shor, A.J. Solar testing of 2MWt water/steam receiver at the Weizmann Institutse solar tower. Solar Energy Mater. 1991, 24, 265–278. [Google Scholar] [CrossRef]
- Litwin, R.Z.; Rogers, R.D.O. Fabrication and Installation of the Solar Two Central Receiver; ASME Solar Engineering: New York, USA, USA, 1996; pp. 125–132. [Google Scholar]
- Ávila-Marín, A.L. Volumetric receivers in Solar Thermal Power Plants with Central Receiver System technology: A review. Sol. Energy 2011, 85, 891–910. [Google Scholar] [CrossRef]
- Clausing, A. An analysis of convective losses from cavity solar central receivers. Sol. Energy 1981, 27, 295–300. [Google Scholar] [CrossRef]
- Reddy, K.; Kumar, N.S. Combined laminar natural convection and surface radiation heat transfer in a modified cavity receiver of solar parabolic dish. Int. J. Therm. Sci. 2008, 47, 1647–1657. [Google Scholar] [CrossRef]
- Prakash, M.; Kedare, S.; Nayak, J. Investigations on heat losses from a solar cavity receiver. Sol. Energy 2009, 83, 157–170. [Google Scholar] [CrossRef]
- Cui, F.; He, Y.; Cheng, Z.-D.; Li, Y. Study on combined heat loss of a dish receiver with quartz glass cover. Appl. Energy 2013, 112, 690–696. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Tang, R. Design and Optical Performance of Compound Parabolic Solar Concentrators with Evacuated Tube as Receivers. Energies 2016, 9, 795. [Google Scholar] [CrossRef] [Green Version]
- Msaddak, A.; Sediki, E.; Ben Salah, M. Assessment of thermal heat loss from solar cavity receiver with Lattice Boltzmann method. Sol. Energy 2018, 173, 1115–1125. [Google Scholar] [CrossRef]
- Hoffman, H.W.; Cohen, S.I. Fused Salt Heat Transfer Part III: Forced Convection Heat Transfer in Circular Tubes Containing the Salt Mixture NaNO2-KNO3-NaNO3. Report No. ORNL-2433; 1960; pp. 9–13. Available online: https://www.osti.gov/servlets/purl/4181833 (accessed on 12 October 2019).
- Silverman, M.D.; Huntley, W.R.; Robertson, H.E. Heat Transfer Measurements in a Forced Convection Loop with Two Molten-Fluoride Salts: LiF-BeF2-ThF4-UF4 and EUTECTIC NaBF4-NaF. 1976, pp. 16–21. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/08/296/8296902.pdf (accessed on 15 October 2019).
- Lu, J.F.; Shen, X.Y.; Ding, J.; Peng, Q.; Wen, Y.L. Convective heat transfer of high temperature molten salt in transversely grooved tube. Appl. Therm. Eng. 2013, 61, 157–162. [Google Scholar]
- Lu, J.; Ding, J.; Yu, T.; Shen, X. Enhanced heat transfer performances of molten salt receiver with spirally grooved pipe. Appl. Therm. Eng. 2015, 88, 491–498. [Google Scholar] [CrossRef]
- Liu, J.; He, Y.; Lei, X. Heat-Transfer Characteristics of Liquid Sodium in a Solar Receiver Tube with a Nonuniform Heat Flux. Energies 2019, 12, 1432. [Google Scholar] [CrossRef] [Green Version]
- Neber, M.; Lee, H. Design of a high temperature cavity receiver for residential scale concentrated solar power. Energy 2012, 47, 481–487. [Google Scholar] [CrossRef]
- Steinfeld, A.; Schubnell, M. Optimum aperture size and operating temperature of a solar cavity-receiver. Sol. Energy 1993, 50, 19–25. [Google Scholar] [CrossRef]
- Montes, M.J.; Rovira, A.; Martínez-Val, J.; Ramos, Á. Proposal of a fluid flow layout to improve the heat transfer in the active absorber surface of solar central cavity receivers. Appl. Therm. Eng. 2012, 35, 220–232. [Google Scholar] [CrossRef]
- Le Roux, W.; Bello-Ochende, T.; Meyer, J. Operating conditions of an open and direct solar thermal Brayton cycle with optimised cavity receiver and recuperator. Energy 2011, 36, 6027–6036. [Google Scholar] [CrossRef] [Green Version]
- Albarbar, A.; Arar, A. Performance Assessment and Improvement of Central Receivers Used for Solar Thermal Plants. Energies 2019, 12, 3079. [Google Scholar] [CrossRef] [Green Version]
- Jiang, K.; Du, X.; Kong, Y.; Xu, C.; Ju, X. A comprehensive review on solid particle receivers of concentrated solar power. Renew. Sustain. Energy Rev. 2019, 116, 109463. [Google Scholar] [CrossRef]
- Nie, F.; Cui, Z.; Bai, F.; Wang, Z. Properties of solid particles as heat transfer fluid in a gravity driven moving bed solar receiver. Sol. Energy Mater. Sol. Cells 2019, 200, 110007. [Google Scholar] [CrossRef]
- Sarafraz, M.M.; Arjomandi, M. Demonstration of plausible application of gallium nano-suspension in microchannel solar thermal receiver: Experimental assessment of thermo-hydraulic performance of microchannel. Int. Commun. Heat Mass Transf. 2018, 94, 39–46. [Google Scholar] [CrossRef]
- Sarafraz, M.M.; Arya, H.; Arjomandi, M. Thermal and hydraulic analysis of a rectangular microchannel with gallium-copper oxide nano-suspension. J. Mol. Liq. 2018, 263, 382–389. [Google Scholar] [CrossRef]
- Sedighi, M.; Taylor, R.A.; Lake, M.; Rose, A.; Izadgoshasb, I.; Padilla, R.V. Development of a novel high-temperature, pressurised, indirectly-irradiated cavity receiver. Energy Convers. Manag. 2020, 204, 112175. [Google Scholar] [CrossRef]
- Yu, T.; Yuan, Q.; Lu, J.; Ding, J.; Lu, Y. Thermochemical storage performances of methane reforming with carbon dioxide in tubular and semi-cavity reactors heated by a solar dish system. Appl. Energy 2017, 185, 1994–2004. [Google Scholar] [CrossRef]
- Corgnale, C.; Ma, Z.; Shimpalee, S. Modeling of a direct solar receiver reactor for decomposition of sulfuric acid in thermochemical hydrogen production cycles. Int. J. Hydrogen Energy 2019, 44, 27237–27247. [Google Scholar] [CrossRef]
- Duniam, S.; Jahn, I.; Hooman, K.; Lu, Y.; Veeraragavan, A. Comparison of direct and indirect natural draft dry cooling tower cooling of the sCO2 Brayton cycle for concentrated solar power plants. Appl. Therm. Eng. 2018, 130, 1070–1080. [Google Scholar] [CrossRef]
- Guo, J.-Q.; Li, M.-J.; Xu, J.; Yan, J.; Wang, K. Thermodynamic performance analysis of different supercritical Brayton cycles using CO2-based binary mixtures in the molten salt solar power tower systems. Energy 2019, 173, 785–798. [Google Scholar] [CrossRef]
- Goodarzi, H.; Akbari, O.A.; Sarafraz, M.M.; Karchegani, M.M.; Safaei, M.R.; Shabani, G.A.S.; Mokhtari, M. Numerical Simulation of Natural Convection Heat Transfer of Nanofluid With Cu, MWCNT, and Al2O3 Nanoparticles in a Cavity With Different Aspect Ratios. J. Therm. Sci. Eng. Appl. 2019, 11, 061020-8. [Google Scholar] [CrossRef]
- Sarafraz, M.M.; Safaei, M.R. Diurnal thermal evaluation of an evacuated tube solar collector (ETSC) charged with graphene nanoplatelets-methanol nano-suspension. Renew. Energy 2019, 142, 364–372. [Google Scholar] [CrossRef]
- Li, X.; Kong, W.; Wang, Z.; Chang, C.; Bai, F. Thermal model and thermodynamic performance of molten salt cavity receiver. Renew. Energy 2010, 35, 981–988. [Google Scholar] [CrossRef]
- Winter, C.J.; Sizmann, R.L.; Vant-hull, L.L. Solar Power Plants-Fundamentals, Technology Systems and Economics; Springer: Berlin, Germany, 1991. [Google Scholar]
- Crump, J.R. A heat transfer textbook by John H. Lienhard, prentice hall, 1981, 51 6+ xi pages; price$24.95. AIChE J. 1981, 27, 700. [Google Scholar] [CrossRef]
- Siebers, D.L.; Kraabel, J.S. Estimating convective energy losses from solar central receivers. Sand 1984, 17, 84–87. [Google Scholar]
- Lu, J.F.; Ding, J.; Yang, J.P. Heat transfer performance of the receiver pipe under unilateral concentrated solar radiation. Solar Energy 2010, 84, 1879–1887. [Google Scholar]
- Colburn, A.P. A method of correlating forced convection heat-transfer data and a comparison with fluid friction. Int. J. Heat Mass Transf. 1964, 7, 1359–1384. [Google Scholar] [CrossRef]
- Bergan, N.E. An external molten salt solar central receiver test. Solar Eng. 1987, 1, 474–478. [Google Scholar]
- Zavoico, A.B. Solar Power Tower Design Basis Document. Report No. SAND2001-2100; Sandia National Laboratories, 2001. Available online: https://www.osti.gov/biblio/786629-solar-power-tower-design-basis-document-revision (accessed on 5 November 2019).
Parameter | Uniform (Mode l) | Nonuniform (Mode l) | Difference | Relative Difference (%) |
---|---|---|---|---|
(°C) | 427.50 | 427.50 | - | - |
(MW) | 5.000 | 5.000 | - | - |
Tw (°C) | 508.62 | 479.12 | −29.5 | −5.80 |
Tbw (°C) | 508.62 | 427.1 | −81.52 | −16.0 |
(MW) | 5.758 | 5.696 | −0.062 | −1.08 |
(%) | 86.84 | 87.79 | 0.95 | 1.09 |
(MW) | 0.758 | 0.696 | −0.062 | −8.18 |
(MW) | 0.327 | 0.279 | −0.048 | −14.7 |
(MW) | 0.115 | 0.107 | −0.008 | −6.96 |
(MW) | 0.094 | 0.089 | −0.005 | −5.32 |
(MW) | 0.209 | 0.207 | −0.002 | −0.96 |
Parameter | Mode I | Mode I1 | Mode II |
---|---|---|---|
(MW) | 5.696 | 5.696 | 5.720 |
(MWm−2) | 0.2687 | 0.2687 | 0.2698 |
(°C) | 427.50 | 429.01 | 429.00 |
(°C) | 479.12 | 482.06 | 482.29 |
(MW) | 0.696 | 0.719 | 0.720 |
(MW) | 5.000 | 4.977 | 5.000 |
(%) | 87.79 | 87.38 | 87.41 |
Parameter | Mode I | Mode I2 | Mode III |
---|---|---|---|
(MW) | 5.696 | 5.696 | 5.728 |
(MWm−2) | 0.2687 | 0.2687 | 0.2698 |
(°C) | 427.50 | 427.50 | 427.50 |
(°C) | 479.12 | 478.88 | 479.19 |
(MW) | 0.696 | 0.723 | 0.728 |
(MW) | 5.000 | 4.973 | 5.000 |
(%) | 87.79 | 87.31 | 87.29 |
Parameter | Mode I | Mode I1 | Mode II | Mode IV |
---|---|---|---|---|
(MW) | 5.696 | 5.720 | 5.728 | 5.752 |
(MWm−2) | 0.2687 | 0.2698 | 0.2698 | 0.2713 |
(°C) | 427.50 | 429.00 | 427.50 | 429.87 |
(°C) | 479.12 | 482.29 | 479.19 | 483.18 |
(MW) | 0.696 | 0.720 | 0.728 | 0.752 |
(MW) | 5.000 | 5.000 | 5.000 | 5.000 |
(%) | 87.79 | 87.41 | 87.29 | 86.93 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Wang, Y.; Ding, J. Nonuniform Heat Transfer Model and Performance of Molten Salt Cavity Receiver. Energies 2020, 13, 1001. https://doi.org/10.3390/en13041001
Lu J, Wang Y, Ding J. Nonuniform Heat Transfer Model and Performance of Molten Salt Cavity Receiver. Energies. 2020; 13(4):1001. https://doi.org/10.3390/en13041001
Chicago/Turabian StyleLu, Jianfeng, Yarong Wang, and Jing Ding. 2020. "Nonuniform Heat Transfer Model and Performance of Molten Salt Cavity Receiver" Energies 13, no. 4: 1001. https://doi.org/10.3390/en13041001
APA StyleLu, J., Wang, Y., & Ding, J. (2020). Nonuniform Heat Transfer Model and Performance of Molten Salt Cavity Receiver. Energies, 13(4), 1001. https://doi.org/10.3390/en13041001