An Induction Curve Model for Prediction of Power Output of Wind Turbines in Complex Conditions
Abstract
:1. Introduction
- Wind resource assessment: at the initial stages of building a wind farm, the feasibility of the project is determined through estimating the amount of energy that can potentially be generated at the site.
- Wind farm control: power forecasting models can help wind farm operators optimize the power output of the plant.
- Managing supply and demand: ensuring grid stability is critical when integrating wind energy into the power grid, and accurate models for forecasting energy generation can help balancing authorities achieve this goal.
- Forecast of energy markets: renewable energy has made energy markets more dynamic, resulting in intra-day or rolling power markets which require accurate forecasts of energy production from wind farms in their transactions.
2. Model Development
2.1. Standard Power Curve
2.2. Power Surface
2.3. Axial Flow Induction Factor Curve
- Mean flow only in the axial direction ()
- Homogeneity in the lateral direction ()
- Coriolis and gravitational forces are negligible
3. Data Sources
3.1. Wind Turbine SCADA System
3.2. Meteorological Tower Data
3.3. Data Quality Control
3.3.1. Quality Checks for Meteorological Tower Data
3.3.2. Quality Checks for SCADA Data
4. Discussion of the Results
Approximation of Turbulent Momentum Fluxes
5. Concluding Remarks and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Seyboth, K.; Kadner, S.; Zwickel, T.; Eickemeier, P.; Hansen, G.; Schlömer, S.; von Stechow, C.; et al. Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Vahidzadeh, M.; Markfort, C.D. Modified Power Curves for Prediction of Power Output of Wind Farms. Energies 2019, 12, 1805. [Google Scholar] [CrossRef] [Green Version]
- Würth, I.; Valldecabres, L.; Simon, E.; Möhrlen, C.; Uzunoğlu, B.; Gilbert, C.; Giebel, G.; Schlipf, D.; Kaifel, A. Minute-scale forecasting of wind power—Results from the collaborative workshop of IEA Wind task 32 and 36. Energies 2019, 12, 712. [Google Scholar] [CrossRef] [Green Version]
- Clifton, A.; Kilcher, L.; Lundquist, J.; Fleming, P. Using machine learning to predict wind turbine power output. Environ. Res. Lett. 2013, 8, 024009. [Google Scholar] [CrossRef]
- Wagner, R.; Courtney, M.; Gottschall, J.; Lindeløw-Marsden, P. Accounting for the speed shear in wind turbine power performance measurement. Wind Energy 2011, 14, 993–1004. [Google Scholar] [CrossRef] [Green Version]
- Choukulkar, A.; Pichugina, Y.; Clack, C.T.; Calhoun, R.; Banta, R.; Brewer, A.; Hardesty, M. A new formulation for rotor equivalent wind speed for wind resource assessment and wind power forecasting. Wind Energy 2016, 19, 1439–1452. [Google Scholar] [CrossRef]
- Kaiser, K.; Langreder, W.; Hohlen, H.; Højstrup, J. Turbulence correction for power curves. In Wind Energy; Springer: Berlin/Heidelberg, Germany, 2007; pp. 159–162. [Google Scholar]
- Wagner, R.; Antoniou, I.; Pedersen, S.M.; Courtney, M.S.; Jørgensen, H.E. The influence of the wind speed profile on wind turbine performance measurements. Wind Energy 2009, 12, 348–362. [Google Scholar] [CrossRef]
- Langreder, W.; Kaiser, K.; Hohlen, H.; Hojstrup, J. Turbulence Correction for Power Curves; EWEC: London, UK, 2004. [Google Scholar]
- Tindal, A.; Johnson, C.; LeBlanc, M.; Harman, K.; Rareshide, E.; Graves, A. Site-specific adjustments to wind turbine power curves. In Proceedings of the AWEA Wind Power Conference, Houston, TX, USA, 1–4 June 2008. [Google Scholar]
- Albers, A.; Jakobi, T.; Rohden, R.; Stoltenjohannes, J. Influence of meteorological variables on measured wind turbine power curves. In Proceedings of the European Wind Energy Conf. & Exhibition, Berlin, Germany, 4–6 December 2007; pp. 525–546. [Google Scholar]
- St Martin, C.M.; Lundquist, J.K.; Clifton, A.; Poulos, G.S.; Schreck, S.J. Wind turbine power production and annual energy production depend on atmospheric stability and turbulence. Wind Energy Sci. (Online) 2016, 1. [Google Scholar] [CrossRef] [Green Version]
- Wharton, S.; Lundquist, J.K. Atmospheric stability affects wind turbine power collection. Environ. Res. Lett. 2012, 7, 014005. [Google Scholar] [CrossRef]
- Redfern, S.; Olson, J.B.; Lundquist, J.K.; Clack, C.T. Incorporation of the Rotor-Equivalent Wind Speed into the Weather Research and Forecasting Model’s Wind Farm Parameterization. Mon. Weather Rev. 2019, 147, 1029–1046. [Google Scholar] [CrossRef]
- Lebron, J.; Castillo, L.; Meneveau, C. Experimental study of the kinetic energy budget in a wind turbine streamtube. J. Turbul. 2012, 13, N43. [Google Scholar] [CrossRef]
- Cortina, G.; Calaf, M.; Cal, R.B. Distribution of mean kinetic energy around an isolated wind turbine and a characteristic wind turbine of a very large wind farm. Phys. Rev. Fluids 2016, 1, 074402. [Google Scholar] [CrossRef]
- Cortina, G.; Sharma, V.; Calaf, M. Wind farm density and harvested power in very large wind farms: A low-order model. Phys. Rev. Fluids 2017, 2, 074601. [Google Scholar] [CrossRef]
- Markfort, C.D.; Zhang, W.; Porté-Agel, F. Turbulent flow and scalar transport through and over aligned and staggered wind farms. J. Turbul. 2012, 13, N33. [Google Scholar] [CrossRef]
- IEC. International Standard, Wind Turbines-Part 12-1: Power Performance Measurements of Electricity Producing Wind Turbines; IEC 61400-12-1; International Electrotechnical Commission: Geneva, Switzerland, 2005. [Google Scholar]
- Betz, A. Schraubenpropeller mit geringstem Energieverlust. Gottinger Nachrichten 1919, 1919, 193–213. [Google Scholar]
- Commission, I.E. Power Performance of Electricity Producing Wind Turbines Based on Nacelle Anemometry; Technical Report, IEC 61400-12-2 CD Part 12-2; International Electrotechnical Commission: Geneva, Switzerland, 2008. [Google Scholar]
- Simley, E.; Angelou, N.; Mikkelsen, T.; Sjöholm, M.; Mann, J.; Pao, L.Y. Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars. J. Renew. Sustain. Energy 2016, 8, 013301. [Google Scholar] [CrossRef] [Green Version]
- Bulaevskaya, V.; Wharton, S.; Clifton, A.; Qualley, G.; Miller, W. Wind power curve modeling in complex terrain using statistical models. J. Renew. Sustain. Energy 2015, 7, 013103. [Google Scholar] [CrossRef]
- Iungo, G.V. Experimental characterization of wind turbine wakes: Wind tunnel tests and wind lidar measurements. J. Wind Eng. Ind. Aerodyn. 2016, 149, 35–39. [Google Scholar] [CrossRef]
- Shin, D.; Ko, K. Application of the Nacelle Transfer Function by a Nacelle-Mounted Light Detection and Ranging System to Wind Turbine Power Performance Measurement. Energies 2019, 12, 1087. [Google Scholar] [CrossRef] [Green Version]
- Carbajo Fuertes, F.; Markfort, C.D.; Porté-Agel, F. Wind Turbine Wake Characterization with Nacelle-Mounted Wind Lidars for Analytical Wake Model Validation. Remote Sens. 2018, 10, 668. [Google Scholar] [CrossRef] [Green Version]
- Brugger, P.; Fuertes, F.C.; Vahidzadeh, M.; Markfort, C.D.; Porté-Agel, F. Characterization of Wind Turbine Wakes with Nacelle-Mounted Doppler LiDARs and Model Validation in the Presence of Wind Veer. Remote Sens. 2019, 11, 2247. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Abraham, A.; Li, B.; Hong, J. Investigation on the Atmospheric Incoming Flow of a Utility-Scale Wind Turbine using Super-large-scale Particle Image Velocimetry. arXiv 2019, arXiv:1907.11386. [Google Scholar]
- Dasari, T.; Wu, Y.; Liu, Y.; Hong, J. Near-wake behaviour of a utility-scale wind turbine. J. Fluid Mech. 2019, 859, 204–246. [Google Scholar] [CrossRef]
- Burton, T.; Jenkins, N.; Sharpe, D.; Bossanyi, E. Wind Energy Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Markfort, C.D.; Zhang, W.; Porté-Agel, F. Analytical model for mean flow and fluxes of momentum and energy in very large wind farms. Bound.-Layer Meteorol. 2018, 166, 31–49. [Google Scholar] [CrossRef]
- Tennekes, H.; Lumley, J.L.; Lumley, J. A First Course in Turbulence; MIT Press: Cambridge, MA, USA, 1972. [Google Scholar]
- Lee, X.; Massman, W.; Law, B. Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis; Springer: Berlin/Heidelberg, Germany, 2004; Volume 29. [Google Scholar]
- Mauder, M.; Foken, T. Documentation and Instruction Manual of the Eddy-Covariance Software Package TK3 (Update); University of Bayreuth: Bayreuth, Germany, 2015. [Google Scholar]
- Aubinet, M.; Vesala, T.; Papale, D. Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Smith, B.; Link, H.; Randall, G.; McCoy, T. Applicability of Nacelle Anemometer Measurements for Use in Turbine Power Performance Tests; Technical Report; National Renewable Energy Lab.: Golden, CO, USA, 2002. [Google Scholar]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer: Berlin/Heidelberg, Germany, 2012; Volume 13. [Google Scholar]
- Aitken, M.L.; Banta, R.M.; Pichugina, Y.L.; Lundquist, J.K. Quantifying wind turbine wake characteristics from scanning remote sensor data. J. Atmos. Ocean. Technol. 2014, 31, 765–787. [Google Scholar] [CrossRef]
- Banta, R.M.; Pichugina, Y.L.; Brewer, W.A. Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci. 2006, 63, 2700–2719. [Google Scholar] [CrossRef] [Green Version]
- Nieuwstadt, F.T. The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci. 1984, 41, 2202–2216. [Google Scholar] [CrossRef]
- Lenschow, D.H.; Li, X.S.; Zhu, C.J.; Stankov, B.B. The stably stratified boundary layer over the Great Plains. In Topics in Micrometeorology. A Festschrift for Arch Dyer; Springer: Berlin/Heidelberg, Germany, 1988; pp. 95–121. [Google Scholar]
- Smedman, A.S. Observations of a multi-level turbulence structure in a very stable atmospheric boundary layer. Bound.-Layer Meteorol. 1988, 44, 231–253. [Google Scholar] [CrossRef]
- Berström, H.; Smedman, A.S. Stably stratified flow in a marine atmospheric surface layer. Bound.-Layer Meteorol. 1995, 72, 239–265. [Google Scholar] [CrossRef]
- Smedman, A.S.; Bergström, H.; Högström, U. Spectra, variances and length scales in a marine stable boundary layer dominated by a low level jet. Bound.-Layer Meteorol. 1995, 76, 211–232. [Google Scholar] [CrossRef]
Sensor | Make/Model | Quantity | Heights | Resolution |
---|---|---|---|---|
Barometric Pressure | Setra 278 | 2 | 6, 106 m | 1 Hz |
Temperature Sensor | NRG 110S | 2 | 6, 20 m | 1 Hz |
Wind Vane | NRG 200P | 7 | 6, 10, 20, 32, 80, 106 m | 1 Hz |
Cup Anemometer | A100LK | 7 | 6, 10, 20, 32, 80, 106 m | 1 Hz |
T/RH Sensor | Vaisala-HMP 155 | 4 | 10, 32, 80, 106 m | 1 Hz |
Sonic Anemometer | Campbell Scientific-CSAT3B | 4 | 10, 32, 80, 106 m | 20 Hz |
Gas Analyzer | LICOR-LI 7500-RS | 1 | 106 m | 20 Hz |
Gas Analyzer | Campbell Scientific-Irgason | 1 | 106 m | 20 Hz |
Radiometer | Kipp&Zonen-CNR4 | 1 | 106 m | 1 Hz |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vahidzadeh, M.; Markfort, C.D. An Induction Curve Model for Prediction of Power Output of Wind Turbines in Complex Conditions. Energies 2020, 13, 891. https://doi.org/10.3390/en13040891
Vahidzadeh M, Markfort CD. An Induction Curve Model for Prediction of Power Output of Wind Turbines in Complex Conditions. Energies. 2020; 13(4):891. https://doi.org/10.3390/en13040891
Chicago/Turabian StyleVahidzadeh, Mohsen, and Corey D. Markfort. 2020. "An Induction Curve Model for Prediction of Power Output of Wind Turbines in Complex Conditions" Energies 13, no. 4: 891. https://doi.org/10.3390/en13040891
APA StyleVahidzadeh, M., & Markfort, C. D. (2020). An Induction Curve Model for Prediction of Power Output of Wind Turbines in Complex Conditions. Energies, 13(4), 891. https://doi.org/10.3390/en13040891